Kevin Shopsowitz, Jack Lofroth, Geoffrey Chan, Jubin Kim, Makhan Rana, Ryan Brinkman, Andrew Weng, Nadia Medvedev, Xuehai Wang
Cava, W. L., Bauer, C., Moore, J. H., & Pendergrass, S. A. (2019). Interpretation of machine learning predictions for patient outcomes in electronic health records. AMIA Annual Symposium Proceedings. AMIA Symposium, 2019, 572–581.
Chen, T., & Guestrin, C. (2016). XGBoost: XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. Association for Computing Machinery, New York (pp. 785–794).
Chulián, S., Martínez‐Rubio, Á., Pérez‐García, V. M., Rosa, M., Goñi, C. B., Gutiérrez, J. F. R., Hermosín‐Ramos, L., Quintana, Á. M., Caballero‐Velázquez, T., Ramírez‐Orellana, M., Robleda, A. C., & Fernández‐Martínez, J. L. (2020). High‐dimensional analysis of single‐cell flow cytometry data predicts relapse in childhood acute lymphoblastic leukaemia. Cancers, 13(1), 17.
Guldberg, S. M., Okholm, T. L. H., McCarthy, E. E., & Spitzer, M. H. (2023). Computational methods for single‐cell proteomics. Annual Review of Biomedical Data Science, 6(1), 47–71.
Heuser, M., Freeman, S. D., Ossenkoppele, G. J., Buccisano, F., Hourigan, C. S., Ngai, L. L., Tettero, J. M., Bachas, C., Baer, C., Béné, M. C., Buecklein, V., Czyz, A., Denys, B., Dillon, R., Feuring‐Buske, M., Guzman, M. L., Haferlach, T., Han, L., Herzig, J. K., … Cloos, J. (2021). 2021 update measurable residual disease in acute myeloid leukemia: European LeukemiaNet working party consensus document. Blood, 138(26), 2753–2767.
Jongen‐Lavrencic, M., Grob, T., Hanekamp, D., Kavelaars, F. G., Al Hinai, A., Zeilemaker, A., Erpelinck‐Verschueren, C. A. J., Gradowska, P. L., Meijer, R., Cloos, J., Biemond, B. J., Graux, C., Kooy, M., Van, M., Manz, M. G., Pabst, T., Passweg, J. R., Havelange, V., Ossenkoppele, G. J., … Valk, P. J. M. (2018). Molecular minimal residual disease in acute myeloid leukemia. The New England Journal of Medicine, 378(13), 1189–1199.
Khoury, J. D., Solary, E., Abla, O., Akkari, Y., Alaggio, R., Apperley, J. F., Bejar, R., Berti, E., Busque, L., Chan, J. K. C., Chen, W., Chen, X., Chng, W.‐J., Choi, J. K., Colmenero, I., Coupland, S. E., Cross, N. C. P., Jong, D. D., Elghetany, M. T., … Hochhaus, A. (2022). The 5th edition of the World Health Organization classification of haematolymphoid tumours: Myeloid and histiocytic/dendritic neoplasms. Leukemia, 36(7), 1703–1719.
Lundberg, S., & Lee, S.‐I. (2017). A unified approach to interpreting model predictions. ArXiv.
Malek, M., Taghiyar, M. J., Chong, L., Finak, G., Gottardo, R., & Brinkman, R. R. (2015). FlowDensity: Reproducing manual gating of flow cytometry data by automated density‐based cell population identification. Bioinformatics, 31(4), 606–607.
McInnes, L., Healy, J., & Melville, J. (2018). UMAP: Uniform manifold approximation and projection for dimension reduction. ArXiv.
Montante, S., & Brinkman, R. R. (2019). Flow cytometry data analysis: Recent tools and algorithms. International Journal of Laboratory Hematology, 41(S1), 56–62.
Reiter, M., Diem, M., Schumich, A., Maurer‐Granofszky, M., Karawajew, L., Rossi, J. G., Ratei, R., Groeneveld‐Krentz, S., Sajaroff, E. O., Suhendra, S., Kampel, M., Dworzak, M. N., & International Berlin‐Frankfurt‐Münster (iBFM)‐FLOW‐network and the AutoFLOW consortium. (2019). Automated flow Cytometric MRD assessment in childhood acute B‐ lymphoblastic leukemia using supervised machine learning. Cytometry Part A, 95(9), 966–975.
Salama, M. E., Otteson, G. E., Camp, J. J., Seheult, J. N., Jevremovic, D., Holmes, D. R., Olteanu, H., & Shi, M. (2022). Artificial intelligence enhances diagnostic flow cytometry workflow in the detection of minimal residual disease of chronic lymphocytic leukemia. Cancers, 14(10), 2537.
Schuurhuis, G. J., Heuser, M., Freeman, S., Béné, M.‐C., Buccisano, F., Cloos, J., Grimwade, D., Haferlach, T., Hills, R. K., Hourigan, C. S., Jorgensen, J. L., Kern, W., Lacombe, F., Maurillo, L., Preudhomme, C., Thiede, C., Venditti, A., Vyas, P., … Ossenkoppele, G. J. (2018). Minimal/measurable residual disease in AML: A consensus document from the European LeukemiaNet MRD working party. Blood, 131(12), 1275–1291.
Shopsowitz, K. E., Liu, L., Setiadi, A., Al‐Bakri, M., & Vercauteren, S. (2022). Machine learning optimized multiparameter radar plots for B‐cell acute lymphoblastic leukemia minimal residual disease analysis. Cytometry Part B: Clinical Cytometry, 102(5), 342–352.
Vial, J. P., Lechevalier, N., Lacombe, F., Dumas, P.‐Y., Bidet, A., Leguay, T., Vergez, F., Pigneux, A., & Béné, M. C. (2021). Unsupervised flow cytometry analysis allows for an accurate identification of minimal residual disease assessment in acute myeloid leukemia. Cancers, 13(4), 629.
Weijler, L., Kowarsch, F., Wödlinger, M., Reiter, M., Maurer‐Granofszky, M., Schumich, A., & Dworzak, M. N. (2022). UMAP based anomaly detection for minimal residual disease quantification within acute myeloid leukemia. Cancers, 14(4), 898.
Wood, B. L. (2020). Acute myeloid leukemia minimal residual disease detection: The difference from normal approach. Current Protocols in Cytometry, 93(1), e73.
Xu, J., Jorgensen, J. L., & Wang, S. A. (2017). How do we use multicolor flow cytometry to detect minimal residual disease in acute myeloid leukemia? Clinics in Laboratory Medicine, 37(4), 787–802.