Erica Bäckström, Alessandro Bonetti, Per Johnsson, Stefan Öhlin, Anders Dahlén, Patrik Andersson, Shalini Andersson, Peter Gennemark
Pharmacokinetics (PK) of antisense oligonucleotides (ASOs) is characterized by rapid distribution from plasma to tissue and slow terminal plasma elimination driven by re-distribution from tissue. Quantitative understanding of tissue PK and RNA knockdown for various ASO chemistries, conjugations, and administration routes is critical for successful drug discovery. Here, we report concentration-time and RNA knockdown profiles for a gapmer ASO with locked nucleic acid ribose chemistry in mouse liver, kidney, heart, and lung after subcutaneous and intratracheal administration. Additionally, the same ASO with liver targeting conjugation (galactosamine--acetyl) is evaluated for subcutaneous administration. Data indicate that exposure and knockdown differ between tissues and strongly depend on administration route and conjugation. In a second study, we show that tissue PK is similar between the three different ribose chemistries locked nucleic acid, constrained ethyl and 2'--methoxyethyl, both after subcutaneous and intratracheal administration. Further, we show that the half-life in mouse liver may vary with ASO sequence. Finally, we report less than dose-proportional increase in liver concentration in the dose range of 3-30 μmol/kg. Overall, our studies contribute pivotal data to support design and interpretation of ASO studies, thereby increasing the probability of delivering novel ASO therapies to patients.
Adv Drug Deliv Rev. 2015 Jun 29;87:46-51
[PMID:
25666165]
Expert Opin Drug Metab Toxicol. 2019 Jun;15(6):475-485
[PMID:
31144994]
Nucleic Acid Ther. 2013 Jun;23(3):213-27
[PMID:
23692080]
J Biol Chem. 2021 Jan-Jun;296:100416
[PMID:
33600796]
J Pharmacol Exp Ther. 2012 Nov;343(2):489-96
[PMID:
22915769]
Inhal Toxicol. 2014 Jul;26(8):452-63
[PMID:
24932560]
Nucleic Acid Ther. 2017 Aug;27(4):209-220
[PMID:
28448194]
Nucleic Acid Ther. 2014 Dec;24(6):374-87
[PMID:
25353652]
Mol Ther Nucleic Acids. 2015 Jan 20;4:e218
[PMID:
25602582]
EMBO Mol Med. 2021 Apr 9;13(4):e13243
[PMID:
33821570]
Nucleic Acid Ther. 2016 Dec;26(6):372-380
[PMID:
27500733]
Nucleic Acids Res. 2020 Jun 4;48(10):5235-5253
[PMID:
32356888]
Nucleic Acid Ther. 2019 Feb;29(1):16-32
[PMID:
30570431]
Drug Metab Dispos. 2007 Mar;35(3):460-8
[PMID:
17172312]
Drug Discov Today. 2018 Jan;23(1):101-114
[PMID:
28988994]
Biochem Pharmacol. 2009 Aug 1;78(3):284-91
[PMID:
19393225]
Mol Ther Nucleic Acids. 2020 Sep 4;21:725-736
[PMID:
32771924]
Mol Ther. 2011 Dec;19(12):2163-8
[PMID:
21971426]
Nucleic Acids Res. 2022 Aug 26;50(15):8418-8430
[PMID:
35920332]
Nucleic Acids Res. 2014 Jul;42(13):8796-807
[PMID:
24992960]
Expert Opin Drug Metab Toxicol. 2009 Apr;5(4):381-91
[PMID:
19379126]
Br J Clin Pharmacol. 2017 Sep;83(9):1932-1943
[PMID:
28294391]
Pulm Pharmacol Ther. 2008 Dec;21(6):845-54
[PMID:
18761414]
Clin Exp Pharmacol Physiol. 2006 May-Jun;33(5-6):533-40
[PMID:
16700890]
Drug Discov Today. 2018 Oct;23(10):1733-1745
[PMID:
29852223]
J Pharmacol Exp Ther. 2000 Jan;292(1):140-9
[PMID:
10604941]
Pharm Res. 1998 Apr;15(4):583-91
[PMID:
9587955]
J Cyst Fibros. 2017 Nov;16(6):671-680
[PMID:
28539224]
Nat Rev Drug Discov. 2020 Oct;19(10):673-694
[PMID:
32782413]
Trends Pharmacol Sci. 2021 Jul;42(7):588-604
[PMID:
34020790]
Biochem J. 1999 Jun 15;340 ( Pt 3):783-92
[PMID:
10359665]
PLoS One. 2019 Jun 28;14(6):e0219182
[PMID:
31251792]
Antisense Nucleic Acid Drug Dev. 2001 Feb;11(1):15-27
[PMID:
11258618]
N Engl J Med. 2017 Jul 20;377(3):222-232
[PMID:
28538111]
Drug Discov Today. 2021 Oct;26(10):2244-2258
[PMID:
33862193]
Nucleic Acid Ther. 2013 Dec;23(6):369-78
[PMID:
24161045]
Nucleic Acid Ther. 2021 Aug;31(4):298-308
[PMID:
33891483]