Genebe.net: Implementation and validation of an automatic ACMG variant pathogenicity criteria assignment.

Piotr Stawiński, Rafał Płoski
Author Information
  1. Piotr Stawiński: Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland.
  2. Rafał Płoski: Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland. ORCID

Abstract

We present GeneBe, an online platform streamlining the automated application of American College of Medical Genetics and Genomics (ACMG), Association for Molecular Pathology (AMP), and the College of American Pathologists (CAP) criteria for assessment of pathogenicity of genetic variants. GeneBe utilizes automated algorithms that evaluate 17 criteria from 28, closely aligning with current guidelines and leveraging data from diverse sources, including ClinVar. The user-friendly web interface enables manual refinement of assignments for specific criteria based on site-collected data. Our algorithm demonstrates a high correlation (r = 0.90) of assigned pathogenicity scores compared to expert assessments from the ClinGen Evidence Repository and substantial concordance with ClinVar verdict assignments (κ = 0.69). Comparative analysis with other published tools reveals that GeneBe performs similarly to VarSome while being superior over TAPES and InterVar. In contrast to some other tools, GeneBe's web implementation is tracker-free and third-party request-free, safeguarding user privacy. Additionally, GeneBe offers an Application Programming Interface (API) for enhanced flexibility and integration into existing workflows and is provided free of charge for research purposes. GeneBe is available at https://genebe.net.

Keywords

References

Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405‐424. doi:10.1038/gim.2015.30
Pejaver V, Byrne AB, Feng B‐J, et al. Calibration of computational tools for missense variant pathogenicity classification and ClinGen recommendations for PP3/BP4 criteria. Am J Hum Genet. 2022;109(12):2163‐2177. doi:10.1016/j.ajhg.2022.10.013
Kopanos C, Tsiolkas V, Kouris A, et al. VarSome: the human genomic variant search engine. Bioinformatics (Oxford, England). 2019;35(11):1978‐1980. doi:10.1093/bioinformatics/bty897
Li Q, Wang K. InterVar: clinical interpretation of genetic variants by the 2015 ACMG‐AMP guidelines. Am J Hum Genet. 2017;100(2):267‐280. doi:10.1016/j.ajhg.2017.01.004
Xavier A, Scott RJ, Talseth‐Palmer BA. TAPES: a tool for assessment and prioritisation in exome studies. PLoS Comput Biol. 2019;15(10):e1007453. doi:10.1371/journal.pcbi.1007453
McLaren W, Gil L, Hunt SE, et al. The Ensembl variant effect predictor. Genome Biol. 2016;17(1):122. doi:10.1186/s13059‐016‐0974‐4
Fokkema IFAC, Taschner PEM, Gerard CP, Schaafsma JC, Laros JFJ, den Dunnen JT. LOVD v.2.0: The next generation in gene variant databases. Hum Mutat. 2011;32(5):557‐563. doi:10.1002/humu.21438
Landrum MJ, Lee JM, Benson M, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46(D1):D1062‐D1067. doi:10.1093/nar/gkx1153
Liu X, Li C, Mou C, Dong Y, Yicheng T. dbNSFP v4: a comprehensive database of transcript‐specific functional predictions and annotations for human nonsynonymous and splice‐site SNVs. Genome Med. 2020;12(1):103. doi:10.1186/s13073‐020‐00803‐9
Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434‐443. doi:10.1038/s41586‐020‐2308‐7
Tavtigian SV, Greenblatt MS, Harrison SM, et al. Modeling the ACMG/AMP variant classification guidelines as a Bayesian classification framework. Genet Med. 2018;20(9):1054‐1060. doi:10.1038/gim.2017.210
McCormick EM, Lott MT, Dulik MC, et al. Specifications of the ACMG/AMP standards and guidelines for mitochondrial DNA variant interpretation. Hum Mutat. 2020;41(12):2028‐2057. doi:10.1002/humu.24107
Rehm HL, Berg JS, Brooks LD, et al. ClinGen‐the Clinical Genome Resource. N Engl J Med. 2015;372(23):2235‐2242. doi:10.1056/NEJMsr1406261
Sherry ST, Ward MH, Kholodov M, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001; 29(1):308‐311. doi:10.1093/nar/29.1.308
Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960;20(1):37‐46. doi:10.1177/001316446002000104
Tayoun A, Ahmad N, Pesaran T, et al. Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion. Hum Mutat. 2018;39(11):1517‐1524. doi:10.1002/humu.23626
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high‐throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164. doi:10.1093/nar/gkq603
Ghosh R, Harrison SM, Rehm HL, Plon SE, Biesecker LG. Updated recommendation for the benign stand alone ACMG/AMP criterion. Hum Mutat. 2018;39(11):1525‐1530. doi:10.1002/humu.23642
Rivera‐Muñoz EA, Milko LV, Harrison SM, et al. ClinGen Variant Curation Expert Panel experiences and standardized processes for disease and gene‐level specification of the ACMG/AMP guidelines for sequence variant interpretation. Hum Mutat. 2018;39(11):1614‐1622. doi:10.1002/humu.23645
Biesecker LG, Harrison SM, ClinGen Sequence Variant Interpretation Working Group. The ACMG/AMP reputable source criteria for the interpretation of sequence variants. Genet Med. 2018;20(12):1687‐1688. doi:10.1038/gim.2018.42
Lindeboom RGH, Supek F, Lehner B. The rules and impact of nonsense‐mediated mRNA decay in human cancers. Nat Genet. 2016;48(10):1112‐1118. doi:10.1038/ng.3664
Yeo G, Burge CB. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol. 2004;11(2–3):377‐394. doi:10.1089/1066527041410418

MeSH Term

Humans
Software
Algorithms
Genomics
Genetic Variation
Databases, Genetic
Genetics, Medical
Computational Biology
Genetic Testing
Internet

Links to CNCB-NGDC Resources

Database Commons: DBC009800 (GeneBe)

Word Cloud

Similar Articles

Cited By