Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405‐424. doi:10.1038/gim.2015.30
Pejaver V, Byrne AB, Feng B‐J, et al. Calibration of computational tools for missense variant pathogenicity classification and ClinGen recommendations for PP3/BP4 criteria. Am J Hum Genet. 2022;109(12):2163‐2177. doi:10.1016/j.ajhg.2022.10.013
Kopanos C, Tsiolkas V, Kouris A, et al. VarSome: the human genomic variant search engine. Bioinformatics (Oxford, England). 2019;35(11):1978‐1980. doi:10.1093/bioinformatics/bty897
Li Q, Wang K. InterVar: clinical interpretation of genetic variants by the 2015 ACMG‐AMP guidelines. Am J Hum Genet. 2017;100(2):267‐280. doi:10.1016/j.ajhg.2017.01.004
Xavier A, Scott RJ, Talseth‐Palmer BA. TAPES: a tool for assessment and prioritisation in exome studies. PLoS Comput Biol. 2019;15(10):e1007453. doi:10.1371/journal.pcbi.1007453
McLaren W, Gil L, Hunt SE, et al. The Ensembl variant effect predictor. Genome Biol. 2016;17(1):122. doi:10.1186/s13059‐016‐0974‐4
Fokkema IFAC, Taschner PEM, Gerard CP, Schaafsma JC, Laros JFJ, den Dunnen JT. LOVD v.2.0: The next generation in gene variant databases. Hum Mutat. 2011;32(5):557‐563. doi:10.1002/humu.21438
Landrum MJ, Lee JM, Benson M, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46(D1):D1062‐D1067. doi:10.1093/nar/gkx1153
Liu X, Li C, Mou C, Dong Y, Yicheng T. dbNSFP v4: a comprehensive database of transcript‐specific functional predictions and annotations for human nonsynonymous and splice‐site SNVs. Genome Med. 2020;12(1):103. doi:10.1186/s13073‐020‐00803‐9
Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434‐443. doi:10.1038/s41586‐020‐2308‐7
Tavtigian SV, Greenblatt MS, Harrison SM, et al. Modeling the ACMG/AMP variant classification guidelines as a Bayesian classification framework. Genet Med. 2018;20(9):1054‐1060. doi:10.1038/gim.2017.210
McCormick EM, Lott MT, Dulik MC, et al. Specifications of the ACMG/AMP standards and guidelines for mitochondrial DNA variant interpretation. Hum Mutat. 2020;41(12):2028‐2057. doi:10.1002/humu.24107
Rehm HL, Berg JS, Brooks LD, et al. ClinGen‐the Clinical Genome Resource. N Engl J Med. 2015;372(23):2235‐2242. doi:10.1056/NEJMsr1406261
Sherry ST, Ward MH, Kholodov M, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001; 29(1):308‐311. doi:10.1093/nar/29.1.308
Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960;20(1):37‐46. doi:10.1177/001316446002000104
Tayoun A, Ahmad N, Pesaran T, et al. Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion. Hum Mutat. 2018;39(11):1517‐1524. doi:10.1002/humu.23626
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high‐throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164. doi:10.1093/nar/gkq603
Ghosh R, Harrison SM, Rehm HL, Plon SE, Biesecker LG. Updated recommendation for the benign stand alone ACMG/AMP criterion. Hum Mutat. 2018;39(11):1525‐1530. doi:10.1002/humu.23642
Rivera‐Muñoz EA, Milko LV, Harrison SM, et al. ClinGen Variant Curation Expert Panel experiences and standardized processes for disease and gene‐level specification of the ACMG/AMP guidelines for sequence variant interpretation. Hum Mutat. 2018;39(11):1614‐1622. doi:10.1002/humu.23645
Biesecker LG, Harrison SM, ClinGen Sequence Variant Interpretation Working Group. The ACMG/AMP reputable source criteria for the interpretation of sequence variants. Genet Med. 2018;20(12):1687‐1688. doi:10.1038/gim.2018.42
Lindeboom RGH, Supek F, Lehner B. The rules and impact of nonsense‐mediated mRNA decay in human cancers. Nat Genet. 2016;48(10):1112‐1118. doi:10.1038/ng.3664
Yeo G, Burge CB. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol. 2004;11(2–3):377‐394. doi:10.1089/1066527041410418