Unraveling the genetic variations underlying virulence disparities among SARS-CoV-2 strains across global regions: insights from Pakistan.

Momina Jabeen, Shifa Shoukat, Huma Shireen, Yiming Bao, Abbas Khan, Amir Ali Abbasi
Author Information
  1. Momina Jabeen: National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
  2. Shifa Shoukat: National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
  3. Huma Shireen: National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
  4. Yiming Bao: National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, 100101, Beijing, China.
  5. Abbas Khan: Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China.
  6. Amir Ali Abbasi: National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan. abbasiam@qau.edu.pk.

Abstract

Over the course of the COVID-19 pandemic, several SARS-CoV-2 variants have emerged that may exhibit different etiological effects such as enhanced transmissibility and infectivity. However, genetic variations that reduce virulence and deteriorate viral fitness have not yet been thoroughly investigated. The present study sought to evaluate the effects of viral genetic makeup on COVID-19 epidemiology in Pakistan, where the infectivity and mortality rate was comparatively lower than other countries during the first pandemic wave. For this purpose, we focused on the comparative analyses of 7096 amino-acid long polyprotein pp1ab. Comparative sequence analysis of 203 SARS-CoV-2 genomes, sampled from Pakistan during the first wave of the pandemic revealed 179 amino acid substitutions in pp1ab. Within this set, 38 substitutions were identified within the Nsp3 region of the pp1ab polyprotein. Structural and biophysical analysis of proteins revealed that amino acid variations within Nsp3's macrodomains induced conformational changes and modified protein-ligand interactions, consequently diminishing the virulence and fitness of SARS-CoV-2. Additionally, the epistatic effects resulting from evolutionary substitutions in SARS-CoV-2 proteins may have unnoticed implications for reducing disease burden. In light of these findings, further characterization of such deleterious SARS-CoV-2 mutations will not only aid in identifying potential therapeutic targets but will also provide a roadmap for maintaining vigilance against the genetic variability of diverse SARS-CoV-2 strains circulating globally. Furthermore, these insights empower us to more effectively manage and respond to potential viral-based pandemic outbreaks of a similar nature in the future.

Keywords

References

Virology. 2015 Oct;484:313-322 [PMID: 26149721]
Int J Infect Dis. 2020 Jul;96:459-460 [PMID: 32464271]
J Chem Theory Comput. 2013 Sep 10;9(9):3878-88 [PMID: 26592383]
Trends Microbiol. 2018 Jul;26(7):598-610 [PMID: 29268982]
Int J Biol Macromol. 2022 May 31;208:105-125 [PMID: 35300999]
Nucleic Acids Res. 2021 Jul 21;49(13):7695-7712 [PMID: 34232992]
Protein Sci. 2018 Jan;27(1):135-145 [PMID: 28884485]
Science. 2007 Sep 14;317(5844):1544-8 [PMID: 17702911]
Protein Eng. 1995 Feb;8(2):127-34 [PMID: 7630882]
Protein Sci. 1993 Sep;2(9):1511-9 [PMID: 8401235]
J Hum Genet. 2020 Dec;65(12):1075-1082 [PMID: 32699345]
Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10915-9 [PMID: 1438297]
Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):E5192-201 [PMID: 27519799]
Virus Res. 2020 Nov;289:198163 [PMID: 32918943]
Sci Rep. 2018 Oct 11;8(1):15177 [PMID: 30310104]
Cell Host Microbe. 2023 Jul 12;31(7):1170-1184.e7 [PMID: 37402373]
Curr Protoc Bioinformatics. 2016 Jun 20;54:5.6.1-5.6.37 [PMID: 27322406]
Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W526-31 [PMID: 15215442]
Emerg Microbes Infect. 2020 Dec;9(1):221-236 [PMID: 31987001]
Infect Genet Evol. 2020 Nov;85:104445 [PMID: 32615316]
Methods Biochem Anal. 2003;44:509-23 [PMID: 12647402]
J Comput Chem. 2004 Oct;25(13):1605-12 [PMID: 15264254]
Nucleic Acids Res. 2017 Jul 3;45(W1):W229-W235 [PMID: 28525590]
Yi Chuan. 2020 Feb 20;42(2):212-221 [PMID: 32102777]
PLoS One. 2021 May 27;16(5):e0251754 [PMID: 34043674]
Emerg Microbes Infect. 2023 Dec;12(1):2209208 [PMID: 37114433]
J Mol Biol. 2020 May 1;432(10):3309-3325 [PMID: 32320687]
J Comput Chem. 2009 Dec;30(16):2785-91 [PMID: 19399780]
J Mol Biol. 1994 Jan 14;235(2):625-34 [PMID: 8289285]
J Infect Dev Ctries. 2021 Apr 30;15(4):480-489 [PMID: 33956647]
Proc Natl Acad Sci U S A. 2021 Jun 8;118(23): [PMID: 34021074]
J Biol Chem. 2016 Mar 4;291(10):4894-902 [PMID: 26740631]
Mol Biol Evol. 1987 Jul;4(4):406-25 [PMID: 3447015]
Genes Immun. 2020 Dec;21(6-8):409-419 [PMID: 33273723]
Proc Natl Acad Sci U S A. 1976 Aug;73(8):2740-1 [PMID: 1066687]
Biochim Biophys Acta Mol Basis Dis. 2020 Oct 1;1866(10):165878 [PMID: 32544429]
Virus Res. 2015 Aug 3;206:120-33 [PMID: 25736566]
PLoS One. 2021 Aug 31;16(8):e0256451 [PMID: 34464419]
Mol Biol (Mosk). 2008 Jul-Aug;42(4):701-6 [PMID: 18856071]
Cell Host Microbe. 2021 Dec 8;29(12):1788-1801.e6 [PMID: 34822776]
Epidemiol Infect. 2020 Oct 26;148:e262 [PMID: 33100263]
J Chem Theory Comput. 2013 Jul 9;9(7):3084-95 [PMID: 26583988]
Int J Clin Pract. 2020 Aug;74(8):e13525 [PMID: 32374903]
Genomics Proteomics Bioinformatics. 2020 Dec;18(6):749-759 [PMID: 33704069]
Euro Surveill. 2017 Mar 30;22(13): [PMID: 28382917]
Virus Evol. 2020 Aug 19;6(2):veaa061 [PMID: 33235813]
Proc Natl Acad Sci U S A. 2020 May 26;117(21):11727-11734 [PMID: 32376634]
J Virol. 2008 Dec;82(24):12325-34 [PMID: 18922871]
Genes (Basel). 2021 Jul 12;12(7): [PMID: 34356077]
Gene Rep. 2021 Jun;23:101024 [PMID: 33490718]
Comput Appl Biosci. 1997 Aug;13(4):425-30 [PMID: 9283757]
Genomics Proteomics Bioinformatics. 2021 Oct;19(5):727-740 [PMID: 34695600]
Cell Host Microbe. 2020 Mar 11;27(3):325-328 [PMID: 32035028]
Cell Biosci. 2021 Jul 19;11(1):136 [PMID: 34281608]
Nucleic Acids Res. 2017 Jan 4;45(D1):D271-D281 [PMID: 27794042]
Nat Rev Mol Cell Biol. 2022 Jan;23(1):3-20 [PMID: 34611326]
Nucleic Acids Res. 2017 Jan 4;45(D1):D482-D490 [PMID: 27899678]
J Gen Virol. 2011 Aug;92(Pt 8):1899-1905 [PMID: 21525212]
J Public Health (Oxf). 2020 Nov 23;42(4):681-687 [PMID: 32728758]
Chem Rev. 2019 Aug 28;119(16):9478-9508 [PMID: 31244000]
J Chem Phys. 2004 Nov 22;121(20):10096-103 [PMID: 15549884]
PLoS Pathog. 2020 Dec 2;16(12):e1009100 [PMID: 33264373]
Mol Biol Evol. 2016 Jul;33(7):1870-4 [PMID: 27004904]
Indian J Clin Biochem. 2021 Oct;36(4):451-458 [PMID: 34219999]
BMC Infect Dis. 2021 Aug 21;21(1):855 [PMID: 34418980]
Respirology. 2021 Sep;26(9):891-892 [PMID: 34056791]
Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 [PMID: 7984417]
Methods Mol Biol. 2018;1685:43-67 [PMID: 29086303]
mBio. 2016 Dec 13;7(6): [PMID: 27965448]
Antiviral Res. 2018 Jan;149:58-74 [PMID: 29128390]

MeSH Term

Humans
SARS-CoV-2
COVID-19
Pakistan
Pandemics
Virulence
Amino Acids
Polyproteins
Genetic Variation

Chemicals

Amino Acids
Polyproteins

Word Cloud

Similar Articles

Cited By