Single-cell RNA sequencing unveils the hidden powers of zebrafish kidney for generating both hematopoiesis and adaptive antiviral immunity.

Chongbin Hu, Nan Zhang, Yun Hong, Ruxiu Tie, Dongdong Fan, Aifu Lin, Ye Chen, Li-Xin Xiang, Jian-Zhong Shao
Author Information
  1. Chongbin Hu: College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China.
  2. Nan Zhang: College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China.
  3. Yun Hong: College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China.
  4. Ruxiu Tie: Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
  5. Dongdong Fan: College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China.
  6. Aifu Lin: College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China.
  7. Ye Chen: College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China.
  8. Li-Xin Xiang: College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China.
  9. Jian-Zhong Shao: College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China. ORCID

Abstract

The vertebrate kidneys play two evolutionary conserved roles in waste excretion and osmoregulation. Besides, the kidney of fish is considered as a functional ortholog of mammalian bone marrow that serves as a hematopoietic hub for generating blood cell lineages and immunological responses. However, knowledge about the properties of kidney hematopoietic cells, and the functionality of the kidney in fish immune systems remains to be elucidated. To this end, our present study generated a comprehensive atlas with 59 hematopoietic stem/progenitor cell (HSPC) and immune-cells types from zebrafish kidneys via single-cell transcriptome profiling analysis. These populations included almost all known cells associated with innate and adaptive immunity, and displayed differential responses to viral infection, indicating their diverse functional roles in antiviral immunity. Remarkably, HSPCs were found to have extensive reactivities to viral infection, and the trained immunity can be effectively induced in certain HSPCs. In addition, the antigen-stimulated adaptive immunity can be fully generated in the kidney, suggesting the kidney acts as a secondary lymphoid organ. These results indicated that the fish kidney is a dual-functional entity with functionalities of both primary and secondary lymphoid organs. Our findings illustrated the unique features of fish immune systems, and highlighted the multifaced biology of kidneys in ancient vertebrates.

Keywords

Associated Data

GEO | GSE242133

References

  1. J Exp Med. 2005 Sep 19;202(6):733-8 [PMID: 16157688]
  2. Cell. 2006 Feb 24;124(4):815-22 [PMID: 16497590]
  3. Nat Rev Microbiol. 2018 Jul;16(7):423-439 [PMID: 29769653]
  4. Nature. 2007 Jan 4;445(7123):102-5 [PMID: 17167422]
  5. Sci Signal. 2020 Mar 31;13(625): [PMID: 32234960]
  6. Blood. 2016 Mar 10;127(10):1242-8 [PMID: 26787736]
  7. J Exp Med. 2014 Feb 10;211(2):217-31 [PMID: 24446491]
  8. Science. 2016 Apr 22;352(6284):aaf1098 [PMID: 27102489]
  9. Virology. 1984 Apr 15;134(1):238-43 [PMID: 6324471]
  10. Virology. 1981 Jul 15;112(1):274-81 [PMID: 7245617]
  11. J Leukoc Biol. 2020 Mar;107(3):431-443 [PMID: 31909502]
  12. Immunity. 2017 Nov 21;47(5):848-861.e5 [PMID: 29126798]
  13. Immunol Rev. 2018 Sep;285(1):5-8 [PMID: 30129196]
  14. Blood. 2009 Jul 9;114(2):279-89 [PMID: 19433857]
  15. Annu Rev Immunol. 2008;26:627-50 [PMID: 18370924]
  16. Dev Comp Immunol. 2013 Jan-Feb;39(1-2):39-62 [PMID: 22504163]
  17. Nature. 2018 Aug;560(7719):494-498 [PMID: 30089906]
  18. Vet Microbiol. 2013 Mar 23;162(2-4):419-428 [PMID: 23177910]
  19. Science. 2009 May 8;324(5928):807-10 [PMID: 19423829]
  20. Cell. 2018 Nov 29;175(6):1634-1650.e17 [PMID: 30433869]
  21. Semin Immunol. 2012 Oct;24(5):309-20 [PMID: 22559987]
  22. Science. 1997 Feb 14;275(5302):964-7 [PMID: 9020076]
  23. Immunol Rev. 2013 Jan;251(1):160-76 [PMID: 23278748]
  24. Gigascience. 2020 Aug 1;9(8): [PMID: 32810278]
  25. Immunol Lett. 2012 Nov-Dec;148(1):23-33 [PMID: 22902399]
  26. J Mol Biol. 2013 Dec 13;425(24):4904-20 [PMID: 24075867]
  27. Front Immunol. 2017 Jan 09;7:675 [PMID: 28119690]
  28. Vet Immunol Immunopathol. 2008 Jun 15;123(3-4):266-76 [PMID: 18378003]
  29. Sci Transl Med. 2021 Jan 27;13(578): [PMID: 33431511]
  30. Front Immunol. 2018 May 31;9:1204 [PMID: 29904386]
  31. Dev Comp Immunol. 1979 Winter;3(1):55-65 [PMID: 437237]
  32. Front Immunol. 2019 Oct 10;10:2292 [PMID: 31649660]
  33. Blood. 1951 Jan;6(1):39-60 [PMID: 14791599]
  34. Int Immunol. 2006 Jan;18(1):41-7 [PMID: 16291656]
  35. Nat Immunol. 2007 Feb;8(2):131-5 [PMID: 17242686]
  36. Front Immunol. 2021 Dec 28;12:783196 [PMID: 35027916]
  37. J Immunol. 2014 Mar 15;192(6):2699-714 [PMID: 24532580]
  38. Cell. 2019 May 30;177(6):1583-1599.e16 [PMID: 31150624]
  39. Blood. 2013 Aug 22;122(8):e1-11 [PMID: 23861249]
  40. Immunol Rev. 2010 Nov;238(1):37-46 [PMID: 20969583]
  41. Cell Rep. 2023 Jul 25;42(7):112664 [PMID: 37342909]
  42. PLoS Pathog. 2023 Apr 4;19(4):e1011222 [PMID: 37014912]
  43. J Immunol. 2009 Sep 15;183(6):3924-31 [PMID: 19717522]
  44. Heredity (Edinb). 2005 Mar;94(3):280-94 [PMID: 15674378]
  45. Front Immunol. 2021 Feb 03;11:594963 [PMID: 33613518]
  46. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  47. Nat Rev Immunol. 2010 Jul;10(7):514-26 [PMID: 20577268]
  48. J Exp Med. 2022 Sep 5;219(9): [PMID: 35938989]
  49. J Exp Med. 2017 Oct 2;214(10):2875-2887 [PMID: 28878000]
  50. Front Immunol. 2017 Feb 13;8:121 [PMID: 28243233]
  51. Blood. 2005 Apr 1;105(7):2717-23 [PMID: 15572596]
  52. Cell. 2018 Jan 11;172(1-2):176-190.e19 [PMID: 29328912]
  53. Cell Syst. 2019 Apr 24;8(4):329-337.e4 [PMID: 30954475]
  54. Elife. 2024 Mar 18;13: [PMID: 38497789]
  55. J Biol Chem. 2020 Jan 24;295(4):1120-1141 [PMID: 31852739]
  56. Front Immunol. 2021 May 07;12:636623 [PMID: 34025644]
  57. Sci Immunol. 2018 Nov 16;3(29): [PMID: 30446505]
  58. FASEB J. 2023 Jun;37(6):e22951 [PMID: 37227178]
  59. J Immunol. 2005 Jun 1;174(11):6608-16 [PMID: 15905499]
  60. Nature. 2011 Feb 3;470(7332):95-100 [PMID: 21270795]
  61. Oncoimmunology. 2021 Jan 21;10(1):1860482 [PMID: 33537169]
  62. Nat Biotechnol. 2011 Jan;29(1):24-6 [PMID: 21221095]
  63. J Immunol. 2004 Dec 15;173(12):7317-23 [PMID: 15585855]
  64. Cell. 2018 Jan 11;172(1-2):147-161.e12 [PMID: 29328910]
  65. Immunology. 2007 Feb;120(2):148-59 [PMID: 17274112]
  66. Annu Rev Cell Dev Biol. 2016 Oct 6;32:693-711 [PMID: 27362646]
  67. J Cachexia Sarcopenia Muscle. 2021 Feb;12(1):109-129 [PMID: 33244879]
  68. Blood. 1998 Jul 15;92(2):362-7 [PMID: 9657732]
  69. Clin Infect Dis. 2001 Jan;32(1):76-102 [PMID: 11118387]
  70. Cell Rep. 2023 Jul 25;42(7):112793 [PMID: 37453064]
  71. Viruses. 2020 Aug 29;12(9): [PMID: 32872471]
  72. J Virol. 2013 Sep;87(18):10025-36 [PMID: 23824820]
  73. Cell Stem Cell. 2020 May 7;26(5):657-674.e8 [PMID: 32169166]
  74. J Immunol. 2019 Nov 1;203(9):2425-2442 [PMID: 31562209]
  75. Immunology. 2011 Jul;133(3):350-9 [PMID: 21506999]
  76. Nat Immunol. 2013 Apr;14(4):320-6 [PMID: 23507645]

Grants

  1. 32173003/National Natural Science Foundation of China
  2. 31630083/National Natural Science Foundation of China
  3. 2018YFD0900503/National Key Research and Development Program of China
  4. 2018YFD0900505/National Key Research and Development Program of China

MeSH Term

Animals
Zebrafish
Perciformes
Hematopoiesis
Kidney
Adaptive Immunity
Virus Diseases
Sequence Analysis, RNA
Mammals

Word Cloud

Similar Articles

Cited By