RNA folding kinetics control riboswitch sensitivity in vivo.

David Z Bushhouse, Jiayu Fu, Julius B Lucks
Author Information
  1. David Z Bushhouse: Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA. ORCID
  2. Jiayu Fu: Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA. ORCID
  3. Julius B Lucks: Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA. ORCID

Abstract

Riboswitches are ligand-responsive gene-regulatory RNA elements that perform key roles in maintaining cellular homeostasis. Understanding how riboswitch sensitivity is controlled is critical to understanding how highly conserved aptamer domains are deployed in a variety of contexts with different sensitivity demands. Here we uncover new roles by which RNA folding dynamics control riboswitch sensitivity in cells. By investigating the ZTP riboswitch, we identify multiple mechanistic routes of altering expression platform sequence and structure to slow RNA folding, all of which enhance riboswitch sensitivity. Applying these methods to riboswitches with diverse aptamer architectures that regulate transcription and translation with ON and OFF logic demonstrates the generality of our findings, indicating that any riboswitch that operates in a kinetic regime can be sensitized by slowing expression platform folding. Comparison of the most sensitized versions of these switches to equilibrium aptamer:ligand dissociation constants suggests a limit to the sensitivities achievable by kinetic RNA switches. Our results add to the growing suite of knowledge and approaches that can be used to rationally program cotranscriptional RNA folding for biotechnology applications, and suggest general RNA folding principles for understanding dynamic RNA systems in other areas of biology.

Keywords

References

Mol Cell. 2015 Jan 22;57(2):317-28 [PMID: 25616067]
RNA. 2007 Mar;13(3):339-50 [PMID: 17200422]
J Mol Biol. 2022 Sep 30;434(18):167665 [PMID: 35659535]
J Biol Chem. 2024 Mar;300(3):105730 [PMID: 38336293]
Annu Rev Biophys. 2012;41:343-70 [PMID: 22577823]
Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):17995-8000 [PMID: 17986617]
Nucleic Acids Res. 1988 Dec 23;16(24):11725-35 [PMID: 3211748]
Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):14024-9 [PMID: 23924614]
Nucleic Acids Res. 2022 Nov 28;50(21):12001-12018 [PMID: 35348734]
Mol Cell. 2018 Nov 1;72(3):541-552.e6 [PMID: 30388413]
ACS Synth Biol. 2013 Aug 16;2(8):463-72 [PMID: 23654267]
RNA. 2023 Aug;29(8):1126-1139 [PMID: 37130702]
Nat Commun. 2022 Jan 11;13(1):207 [PMID: 35017489]
Nat Commun. 2019 Dec 3;10(1):5511 [PMID: 31796736]
RNA Biol. 2010 May-Jun;7(3):328-32 [PMID: 20458165]
Trends Biochem Sci. 2016 Apr;41(4):293-310 [PMID: 26822487]
Nat Chem Biol. 2018 Oct;14(10):964-971 [PMID: 30061719]
Nat Methods. 2015 Oct;12(10):989-94 [PMID: 26258292]
Nat Commun. 2020 Sep 10;11(1):4531 [PMID: 32913225]
Proc Natl Acad Sci U S A. 2021 Apr 20;118(16): [PMID: 33850018]
J Biomol NMR. 2015 Sep;63(1):67-76 [PMID: 26188386]
Biochim Biophys Acta. 2014 Oct;1839(10):919-930 [PMID: 24590258]
Nat Commun. 2014 Nov 10;5:5324 [PMID: 25382214]
Nature. 2015 Oct 29;526(7575):672-7 [PMID: 26416753]
ACS Appl Bio Mater. 2022 Sep 28;: [PMID: 36170638]
Nucleic Acids Res. 2023 Apr 11;51(6):2891-2903 [PMID: 36864761]
PLoS Genet. 2011 Jan 20;7(1):e1001278 [PMID: 21283784]
Anal Chem. 2018 Aug 21;90(16):9751-9760 [PMID: 30040891]
Science. 2012 Jan 13;335(6065):233-235 [PMID: 22194412]
Nat Struct Mol Biol. 2016 Dec;23(12):1124-1131 [PMID: 27798597]
Mol Cell. 2011 Sep 16;43(6):867-79 [PMID: 21925376]
J Chem Phys. 2015 Jan 7;142(1):015103 [PMID: 25573585]
J Mol Biol. 1966 Feb;15(2):467-88 [PMID: 5915178]
Appl Microbiol Biotechnol. 2009 Nov;85(2):229-36 [PMID: 19756582]
ACS Chem Biol. 2024 Mar 15;19(3):607-618 [PMID: 38412235]
RNA. 2017 Jul;23(7):995-1011 [PMID: 28396576]
Nat Chem Biol. 2019 Nov;15(11):1067-1076 [PMID: 31636437]
Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9545-50 [PMID: 10449729]
Biophys J. 2015 Dec 15;109(12):2644-2653 [PMID: 26682821]
Nucleic Acids Res. 2013 Dec;41(22):10449-61 [PMID: 23999097]
Proc Natl Acad Sci U S A. 2021 Nov 9;118(45): [PMID: 34740970]
ACS Synth Biol. 2020 Jan 17;9(1):10-18 [PMID: 31829623]
BMC Genomics. 2016 Mar 09;17:206 [PMID: 26956374]
Nucleic Acids Res. 2020 Jul 9;48(12):6970-6979 [PMID: 32479610]
Nat Commun. 2023 Apr 27;14(1):2416 [PMID: 37105971]
Proc Natl Acad Sci U S A. 2021 Nov 23;118(47): [PMID: 34782462]
Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3323-8 [PMID: 22331895]
Nature. 2012 May 13;486(7401):85-9 [PMID: 22678284]
PLoS One. 2014 Sep 12;9(9):e107504 [PMID: 25215508]
Nucleic Acids Res. 2016 Jan 8;44(1):1-13 [PMID: 26621913]
Nat Struct Mol Biol. 2015 Sep;22(9):679-85 [PMID: 26280533]
Cold Spring Harb Symp Quant Biol. 2019;84:21-30 [PMID: 32295929]
RNA. 2003 Jun;9(6):722-33 [PMID: 12756330]
Nucleic Acids Res. 2012 Feb;40(3):1345-55 [PMID: 22009676]
Wiley Interdiscip Rev RNA. 2015 Nov-Dec;6(6):631-50 [PMID: 26361734]
ACS Synth Biol. 2022 Jul 15;11(7):2275-2283 [PMID: 35775197]
Cold Spring Harb Perspect Biol. 2012 Feb 01;4(2): [PMID: 21106649]
Structure. 2015 Aug 4;23(8):1375-1381 [PMID: 26118534]
J Mol Biol. 1966 Feb;15(2):455-66 [PMID: 5915177]
Biochemistry. 2022 Feb 1;61(3):137-149 [PMID: 35068140]
Front Mol Biosci. 2021 Jan 13;7:607158 [PMID: 33521053]
Nucleic Acids Res. 2021 Apr 19;49(7):3661-3671 [PMID: 33772594]
Curr Opin Microbiol. 2007 Apr;10(2):176-81 [PMID: 17383225]
Nat Biotechnol. 2006 Dec;24(12):1558-64 [PMID: 17160062]
Nat Rev Drug Discov. 2022 Oct;21(10):736-762 [PMID: 35941229]
J Am Chem Soc. 2011 Feb 23;133(7):2177-82 [PMID: 21268641]
PLoS One. 2020 Dec 1;15(12):e0243155 [PMID: 33259551]
Expert Opin Ther Targets. 2023 Jan-Jun;27(6):433-445 [PMID: 37364239]
Annu Rev Biochem. 2017 Jun 20;86:515-539 [PMID: 28375743]
Mol Cell. 2005 Apr 1;18(1):49-60 [PMID: 15808508]
Nat Commun. 2023 Sep 6;14(1):5438 [PMID: 37673863]
Nat Commun. 2024 Sep 17;15(1):8173 [PMID: 39289353]
Science. 2012 Oct 19;338(6105):397-400 [PMID: 23087247]
Cell Chem Biol. 2020 Oct 15;27(10):1241-1249.e4 [PMID: 32795418]

Grants

  1. R01 GM130901/NIGMS NIH HHS
  2. T32 GM008382/NIGMS NIH HHS

Word Cloud

Similar Articles

Cited By