A Mettl16/mA/mybl2b/Igf2bp1 axis ensures cell cycle progression of embryonic hematopoietic stem and progenitor cells.

Yunqiao Han, Kui Sun, Shanshan Yu, Yayun Qin, Zuxiao Zhang, Jiong Luo, Hualei Hu, Liyan Dai, Manman Cui, Chaolin Jiang, Fei Liu, Yuwen Huang, Pan Gao, Xiang Chen, Tianqing Xin, Xiang Ren, Xiaoyan Wu, Jieping Song, Qing Wang, Zhaohui Tang, Jianjun Chen, Haojian Zhang, Xianqin Zhang, Mugen Liu, Daji Luo
Author Information
  1. Yunqiao Han: Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China. ORCID
  2. Kui Sun: Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China. ORCID
  3. Shanshan Yu: Institute of Visual Neuroscience and Stem Cell Engineering, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, China.
  4. Yayun Qin: Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, 430070, China.
  5. Zuxiao Zhang: Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
  6. Jiong Luo: Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
  7. Hualei Hu: Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
  8. Liyan Dai: Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China. ORCID
  9. Manman Cui: Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, 430071, China.
  10. Chaolin Jiang: Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China. ORCID
  11. Fei Liu: Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China.
  12. Yuwen Huang: Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
  13. Pan Gao: Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
  14. Xiang Chen: Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
  15. Tianqing Xin: Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
  16. Xiang Ren: Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
  17. Xiaoyan Wu: Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
  18. Jieping Song: Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, 430070, China. ORCID
  19. Qing Wang: Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China. ORCID
  20. Zhaohui Tang: Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
  21. Jianjun Chen: Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA. ORCID
  22. Haojian Zhang: Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, 430071, China. ORCID
  23. Xianqin Zhang: Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China. xqzhang04@hust.edu.cn. ORCID
  24. Mugen Liu: Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China. lium@mail.hust.edu.cn. ORCID
  25. Daji Luo: Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China. luodaji@ihb.ac.cn. ORCID

Abstract

Prenatal lethality associated with mouse knockout of Mettl16, a recently identified RNA N6-methyladenosine (mA) methyltransferase, has hampered characterization of the essential role of METTL16-mediated RNA mA modification in early embryonic development. Here, using cross-species single-cell RNA sequencing analysis, we found that during early embryonic development, METTL16 is more highly expressed in vertebrate hematopoietic stem and progenitor cells (HSPCs) than other methyltransferases. In Mettl16-deficient zebrafish, proliferation capacity of embryonic HSPCs is compromised due to G1/S cell cycle arrest, an effect whose rescue requires Mettl16 with intact methyltransferase activity. We further identify the cell-cycle transcription factor mybl2b as a directly regulated by Mettl16-mediated mA modification. Mettl16 deficiency resulted in the destabilization of mybl2b mRNA, likely due to lost binding by the mA reader Igf2bp1 in vivo. Moreover, we found that the METTL16-mA-MYBL2-IGF2BP1 axis controlling G1/S progression is conserved in humans. Collectively, our findings elucidate the critical function of METTL16-mediated mA modification in HSPC cell cycle progression during early embryonic development.

Keywords

References

  1. Int J Mol Med. 2018 Apr;41(4):1958-1966 [PMID: 29328428]
  2. Clin Chem. 2018 Sep;64(9):1308-1318 [PMID: 29903876]
  3. J Cell Biol. 2011 Nov 28;195(5):709-20 [PMID: 22123859]
  4. Nat Commun. 2022 Oct 28;13(1):6435 [PMID: 36307435]
  5. Blood. 2019 Feb 21;133(8):805-815 [PMID: 30482793]
  6. Sci Rep. 2021 Jan 21;11(1):2018 [PMID: 33479347]
  7. Mol Cancer. 2020 Aug 10;19(1):123 [PMID: 32772918]
  8. Proc Natl Acad Sci U S A. 2021 Apr 6;118(14): [PMID: 33785593]
  9. Oncol Lett. 2020 Aug;20(2):1360-1368 [PMID: 32724378]
  10. Cell Stem Cell. 2023 Jan 5;30(1):52-68.e13 [PMID: 36608679]
  11. Cell. 2017 Dec 14;171(7):1559-1572.e20 [PMID: 29245011]
  12. J Hepatol. 2011 Jul;55(1):111-9 [PMID: 21419759]
  13. Cell Stem Cell. 2016 May 5;18(5):668-81 [PMID: 27053300]
  14. Leuk Res. 2008 Dec;32(12):1793-9 [PMID: 18606449]
  15. Annu Rev Genet. 2005;39:481-501 [PMID: 16285869]
  16. Stem Cell Reports. 2018 Feb 13;10(2):339-346 [PMID: 29307578]
  17. Cancers (Basel). 2022 Apr 24;14(9): [PMID: 35565249]
  18. Cell. 2015 Jun 4;161(6):1388-99 [PMID: 26046440]
  19. Nature. 2004 Nov 18;432(7015):316-23 [PMID: 15549093]
  20. Nat Cell Biol. 2022 Feb;24(2):205-216 [PMID: 35145225]
  21. Blood. 2014 Sep 4;124(10):1578-85 [PMID: 25006126]
  22. J Hematol Oncol. 2021 Apr 13;14(1):60 [PMID: 33849617]
  23. Cell. 2017 May 18;169(5):824-835.e14 [PMID: 28525753]
  24. Cell Res. 2018 Sep;28(9):904-917 [PMID: 30065315]
  25. Nat Cell Biol. 2019 Sep;21(9):1060-1067 [PMID: 31481793]
  26. Cell. 2002 Oct 18;111(2):241-50 [PMID: 12408868]
  27. BMC Bioinformatics. 2006 Feb 22;7:85 [PMID: 16504059]
  28. Cell Stem Cell. 2015 Mar 5;16(3):289-301 [PMID: 25683224]
  29. Mol Cell. 2018 Sep 20;71(6):986-1000.e11 [PMID: 30197299]
  30. Mol Cell. 2016 Feb 18;61(4):507-519 [PMID: 26876937]
  31. Cell Stem Cell. 2022 Nov 3;29(11):1562-1579.e7 [PMID: 36332570]
  32. Trends Cell Biol. 2018 Feb;28(2):113-127 [PMID: 29103884]
  33. Blood. 2016 Jul 21;128(3):415-26 [PMID: 27268086]
  34. Cell. 2008 Feb 22;132(4):631-44 [PMID: 18295580]
  35. Dev Cell. 2017 Aug 21;42(4):349-362.e4 [PMID: 28803829]
  36. J Exp Med. 2021 Mar 1;218(3): [PMID: 33156926]
  37. Methods Mol Biol. 2022;2508:319-340 [PMID: 35737248]
  38. EMBO Rep. 2017 Nov;18(11):2004-2014 [PMID: 29051200]
  39. Nature. 2017 Sep 14;549(7671):273-276 [PMID: 28869969]
  40. Cell Stem Cell. 2020 Jul 2;27(1):64-80.e9 [PMID: 32402250]
  41. Mol Cancer. 2022 Feb 23;21(1):60 [PMID: 35197058]
  42. Nat Chem Biol. 2014 Feb;10(2):93-5 [PMID: 24316715]
  43. Blood. 2020 Oct 1;136(14):1615-1622 [PMID: 32736377]
  44. Trends Genet. 2013 Feb;29(2):108-15 [PMID: 23218460]
  45. Nucleic Acids Res. 2019 Jan 10;47(1):375-390 [PMID: 30371874]
  46. Adv Sci (Weinh). 2021 Jan 29;8(6):2002831 [PMID: 33747724]
  47. Cell Res. 2014 Dec;24(12):1403-19 [PMID: 25412662]
  48. Mol Cell. 2013 Jan 10;49(1):18-29 [PMID: 23177736]
  49. Int J Hematol. 2016 May;103(5):487-97 [PMID: 27084253]
  50. Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):14013-14018 [PMID: 27872311]
  51. Cell. 2012 Jun 22;149(7):1635-46 [PMID: 22608085]
  52. Nat Commun. 2014 Mar 11;5:3431 [PMID: 24614941]
  53. Cell Rep. 2019 Apr 30;27(5):1567-1578.e5 [PMID: 31042481]
  54. Nat Cell Biol. 2018 Mar;20(3):285-295 [PMID: 29476152]
  55. Cell Stem Cell. 2019 Jul 3;25(1):137-148.e6 [PMID: 31031138]
  56. Nucleic Acids Res. 2020 Sep 4;48(15):8576-8590 [PMID: 32761127]
  57. Cell Death Differ. 2018 Jan;25(1):114-132 [PMID: 29125603]
  58. Nat Cell Biol. 2019 Jun;21(6):700-709 [PMID: 31061465]
  59. Cell Rep. 2017 Dec 19;21(12):3354-3363 [PMID: 29262316]
  60. Cell Stem Cell. 2018 Feb 1;22(2):191-205.e9 [PMID: 29290617]
  61. Science. 2019 Mar 8;363(6431):1085-1088 [PMID: 30705153]
  62. Immunity. 2006 Dec;25(6):963-75 [PMID: 17157041]
  63. Blood. 2015 Feb 12;125(7):1098-106 [PMID: 25540193]
  64. Development. 2022 Sep 1;149(17): [PMID: 35929537]
  65. Oncogene. 2021 Jul;40(27):4615-4624 [PMID: 34131285]
  66. Cell Stem Cell. 2020 Jul 2;27(1):81-97.e8 [PMID: 32402251]
  67. Immunity. 2020 Jun 16;52(6):1007-1021.e8 [PMID: 32497523]
  68. Nucleic Acids Res. 2023 Jan 6;51(D1):D269-D279 [PMID: 36300630]
  69. Mol Cell. 2018 Sep 20;71(6):1001-1011.e4 [PMID: 30197297]
  70. Oncol Rep. 2018 Aug;40(2):621-634 [PMID: 29989647]
  71. Nucleic Acids Res. 2021 Feb 26;49(4):2027-2043 [PMID: 33476374]
  72. Biosci Rep. 2018 Aug 31;38(4): [PMID: 30068697]

Grants

  1. 32270646/MOST | National Natural Science Foundation of China (NSFC)
  2. 82071010/MOST | National Natural Science Foundation of China (NSFC)
  3. 81870959/MOST | National Natural Science Foundation of China (NSFC)
  4. 32370880/MOST | National Natural Science Foundation of China (NSFC)
  5. 31922085/MOST | NSFC | National Outstanding Youth Science Fund Project of National Natural Science Foundation of China (IUSS)
  6. 2016QYTD02/Program for HUST Academic Frontier Youth Team
  7. 2018YFA0801000/grants from the Ministry of Science and Technology of China

MeSH Term

Animals
Humans
Mice
Adenosine
Cell Cycle
Cell Cycle Proteins
Cell Proliferation
Embryonic Development
Gene Expression Regulation, Developmental
Hematopoietic Stem Cells
Methyltransferases
RNA-Binding Proteins
Zebrafish
Zebrafish Proteins
Transcription Factors
RNA Methylation

Chemicals

Adenosine
Cell Cycle Proteins
IGF2BP1 protein, human
Methyltransferases
METTL16 protein, human
N-methyladenosine
RNA-Binding Proteins
Zebrafish Proteins
mybl2b protein, zebrafish
Transcription Factors
Igf2bp1 protein, zebrafish

Word Cloud

Similar Articles

Cited By