Understanding and Quantifying Network Robustness to Stochastic Inputs.

Hwai-Ray Tung, Sean D Lawley
Author Information
  1. Hwai-Ray Tung: Department of Mathematics, University of Utah, Salt Lake City, UT, 84112, USA.
  2. Sean D Lawley: Department of Mathematics, University of Utah, Salt Lake City, UT, 84112, USA. lawley@math.utah.edu. ORCID

Abstract

A variety of biomedical systems are modeled by networks of deterministic differential equations with stochastic inputs. In some cases, the network output is remarkably constant despite a randomly fluctuating input. In the context of biochemistry and cell biology, chemical reaction networks and multistage processes with this property are called robust. Similarly, the notion of a forgiving drug in pharmacology is a medication that maintains therapeutic effect despite lapses in patient adherence to the prescribed regimen. What makes a network robust to stochastic noise? This question is challenging due to the many network parameters (size, topology, rate constants) and many types of noisy inputs. In this paper, we propose a summary statistic to describe the robustness of a network of linear differential equations (i.e. a first-order mass-action system). This statistic is the variance of a certain random walk passage time on the network. This statistic can be quickly computed on a modern computer, even for complex networks with thousands of nodes. Furthermore, we use this statistic to prove theorems about how certain network motifs increase robustness. Importantly, our analysis provides intuition for why a network is or is not robust to noise. We illustrate our results on thousands of randomly generated networks with a variety of stochastic inputs.

Keywords

References

Anderson DF, Mattingly JC (2007) Propagation of fluctuations in biochemical systems, II: nonlinear chains. IET Syst Biol 1(6):313–325 [DOI: 10.1049/iet-syb]
Anderson DF, Mattingly JC, Frederik Nijhout H, Reed MC (2007) Propagation of fluctuations in biochemical systems, I: Linear SSC networks. Bull Math Biol 69(6):1791–1813 [DOI: 10.1007/s11538-007-9192-2]
Bao J-D, Jia Y (2004) Determination of fission rate by mean last passage time. Phys Rev C 69(2):027602 [DOI: 10.1103/PhysRevC.69.027602]
Bena I (2006) Dichotomous markov noise: exact results for out-of-equilibrium systems. Int J Mod Phys B 20(20):2825–2888 [DOI: 10.1142/S0217979206034881]
Browning AP, Jenner AL, Baker RE, Maini PK (2023) Smoothing in linear multicompartment biological processes subject to stochastic input. arXiv preprint arXiv:2305.09004
Campbell A (2003) The future of bacteriophage biology. Nat Rev Genet 4(6):471–477 [DOI: 10.1038/nrg1089]
Cannon WB (1932) The wisdom of the body. Norton & Co., New York [DOI: 10.1097/00000441-193212000-00028]
Carr EJ, Simpson MJ (2019) New homogenization approaches for stochastic transport through heterogeneous media. J Chem Phys 150(4)
Clark ED, Lawley SD (2023) How drug onset rate and duration of action affect drug forgiveness. J Pharmacokin Pharmacodyn (in press)
Clark ED, Lawley SD (2022) Should patients skip late doses of medication? A pharmacokinetic perspective. J Pharmacokinet Pharmacodyn 49(4):429–444 [DOI: 10.1007/s10928-022-09812-0]
Comtet A, Cornu F, Schehr G (2020) Last-passage time for linear diffusions and application to the emptying time of a box. J Stat Phys 181(5):1565–1602 [DOI: 10.1007/s10955-020-02637-6]
Counterman ED, Lawley SD (2021) What should patients do if they miss a dose of medication? A theoretical approach. J Pharmacokinet Pharmacodyn 48(6):873–892 [DOI: 10.1007/s10928-021-09777-6]
Counterman ED, Lawley SD (2022) Designing drug regimens that mitigate nonadherence. Bull Math Biol 84(1):1–36 [DOI: 10.1007/s11538-021-00976-3]
Félix M-A, Barkoulas M (2015) Pervasive robustness in biological systems. Nat Rev Genet 16(8):483–496 [DOI: 10.1038/nrg3949]
Felmlee MA, Morris ME, Mager DE (2012) Mechanism-based pharmacodynamic modeling. In: Computational toxicology, pp 583–600. Springer
Fermín LJ, Lévy-Véhel J (2017) Variability and singularity arising from poor compliance in a pharmacokinetic model ii: the multi-oral case. J Math Biol 74(4):809–841 [DOI: 10.1007/s00285-016-1041-1]
Fill JA (2009) The passage time distribution for a birth-and-death chain: strong stationary duality gives a first stochastic proof. J Theor Probab 22(3):543–557 [DOI: 10.1007/s10959-009-0235-5]
Gibaldi M, Perrier D (1982) Pharmacokinetics, 2nd edn. Marcelly Dekker, New York [DOI: 10.1201/b14095]
Haynes RB, McDonald HP, Garg A, Montague P (2002) Interventions for helping patients to follow prescriptions for medications. Cochrane Database Syste Rev 2
Huang C, Ferrell JE (1996) Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 93(19):10078–10083 [DOI: 10.1073/pnas.93.19.10078]
Kloeden PE, Platen E (1992) Numerical solution of stochastic differential equations, corrected edition. Springer, Berlin [DOI: 10.1007/978-3-662-12616-5]
Lévy-Véhel P-E, Lévy-Véhel J (2013) Variability and singularity arising from poor compliance in a pharmacokinetic model i: the multi-iv case. J Pharmacokinet Pharmacodyn 40(1):15–39 [DOI: 10.1007/s10928-012-9284-y]
Li J, Nekka F (2007) A pharmacokinetic formalism explicitly integrating the patient drug compliance. J Pharmacokinet Pharmacodyn 34(1):115–139 [DOI: 10.1007/s10928-006-9036-y]
Li J, Nekka F (2009) A probabilistic approach for the evaluation of pharmacological effect induced by patient irregular drug intake. J Pharmacokinet Pharmacodyn 36(3):221–238 [DOI: 10.1007/s10928-009-9119-7]
Liu L, Liu X, Yao DD (2004) Analysis and optimization of a multistage inventory-queue system. Manag Sci 50(3):365–380 [DOI: 10.1287/mnsc.1030.0196]
Louten J (2016) Virus structure and classification. In: Essential human virology, pp 19
McAllister N, Lawley S (2022) A pharmacokinetic and pharmacodynamic analysis of drug forgiveness. J Pharmacokinet Pharmacodyn 49:1–17 [DOI: 10.1007/s10928-022-09808-w]
Meyer B, Chevalier C, Voituriez R, Bénichou O (2011) Universality classes of first-passage-time distribution in confined media. Phys Rev E 83(5):051116 [DOI: 10.1103/PhysRevE.83.051116]
Michael J (2007) Conceptual assessment in the biological sciences: a national science foundation-sponsored workshop
Morgan DO (2007) The cell cycle: principles of control. New Science Press, Beijing
Norris JR (1998) Markov chains, statistical & probabilistic mathematics. Cambridge University Press, Cambridge
Osterberg L, Blaschke T (2005) Adherence to medication. N Engl J Med 353(5):487–497 [DOI: 10.1056/NEJMra050100]
Osterberg LG, Urquhart J, Blaschke TF (2010) Understanding forgiveness: minding and mining the gaps between pharmacokinetics and therapeutics. Clin Pharmacol Therapeutics 88(4):457–459 [DOI: 10.1038/clpt.2010.171]
Pavliotis GA (2014) Stochastic processes and applications: diffusion processes, the Fokker-Planck and Langevin equations, vol 60. Springer, Berlin
Rosenbaum SE (2016) Basic pharmacokinetics and pharmacodynamics: an integrated textbook and computer simulations. Wiley, Hoboken
Sabaté E, Sabaté E et al (2003) Adherence to long-term therapies: evidence for action. World Health Organization, Geneva
Simpson EH (1949) Measurement of diversity. Nature 163(4148):688–688 [DOI: 10.1038/163688a0]

Grants

  1. 1944574/Division of Mathematical Sciences
  2. 2325258/Division of Mathematical Sciences
  3. 1814832/Division of Mathematical Sciences

MeSH Term

Humans
Mathematical Concepts
Models, Biological
Patient Compliance
Time Factors

Word Cloud

Similar Articles

Cited By