Machine learning applied to epilepsy: bibliometric and visual analysis from 2004 to 2023.

Qing Huo, Xu Luo, Zu-Cai Xu, Xiao-Yan Yang
Author Information
  1. Qing Huo: School of Nursing, Zunyi Medical University, Zunyi, China.
  2. Xu Luo: School of Medical Information Engineering, Zunyi Medical University, Zunyi, China.
  3. Zu-Cai Xu: Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China.
  4. Xiao-Yan Yang: Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China.

Abstract

Background: Epilepsy is one of the most common serious chronic neurological disorders, which can have a serious negative impact on individuals, families and society, and even death. With the increasing application of machine learning techniques in medicine in recent years, the integration of machine learning with epilepsy has received close attention, and machine learning has the potential to provide reliable and optimal performance for clinical diagnosis, prediction, and precision medicine in epilepsy through the use of various types of mathematical algorithms, and promises to make better parallel advances. However, no bibliometric assessment has been conducted to evaluate the scientific progress in this area. Therefore, this study aims to visually analyze the trend of the current state of research related to the application of machine learning in epilepsy through bibliometrics and visualization.
Methods: Relevant articles and reviews were searched for 2004-2023 using Web of Science Core Collection database, and bibliometric analyses and visualizations were performed in VOSviewer, CiteSpace, and Bibliometrix (R-Tool of R-Studio).
Results: A total of 1,284 papers related to machine learning in epilepsy were retrieved from the Wo SCC database. The number of papers shows an increasing trend year by year. These papers were mainly from 1,957 organizations in 87 countries/regions, with the majority from the United States and China. The journal with the highest number of published papers is EPILEPSIA. Acharya, U. Rajendra (Ngee Ann Polytechnic, Singapore) is the authoritative author in the field and his paper "Deep Convolutional Neural Networks for Automated Detection and Diagnosis of Epileptic Seizures Using EEG Signals" was the most cited. Literature and keyword analysis shows that seizure prediction, epilepsy management and epilepsy neuroimaging are current research hotspots and developments.
Conclusions: This study is the first to use bibliometric methods to visualize and analyze research in areas related to the application of machine learning in epilepsy, revealing research trends and frontiers in the field. This information will provide a useful reference for epilepsy researchers focusing on machine learning.

Keywords

References

Front Comput Neurosci. 2019 Apr 26;13:25 [PMID: 31105545]
Epilepsy Behav. 2018 Aug;85:141-149 [PMID: 29940377]
ESMO Open. 2022 Oct;7(5):100590 [PMID: 36174363]
Brain. 2019 Sep 1;142(9):2670-2687 [PMID: 31365054]
Int Urol Nephrol. 2023 Jun;55(6):1509-1521 [PMID: 36611104]
Front Microbiol. 2023 Jan 09;13:1074003 [PMID: 36699603]
Neural Netw. 2018 Sep;105:104-111 [PMID: 29793128]
Epilepsia. 2015 Feb;56(2):207-17 [PMID: 25599821]
Epilepsy Curr. 2022 Jan 12;22(2):91-96 [PMID: 35444507]
Front Neurol. 2021 Jul 29;12:704170 [PMID: 34393981]
Curr Neurol Neurosci Rep. 2023 Dec;23(12):869-879 [PMID: 38060133]
Radiology. 2010 May;255(2):342-51 [PMID: 20413749]
Front Oncol. 2022 Aug 11;12:978427 [PMID: 36033537]
Front Neurol. 2022 Jan 17;12:823474 [PMID: 35111131]
Brain. 2022 Apr 29;145(3):897-908 [PMID: 34849619]
Brain. 2022 Apr 29;145(3):807-810 [PMID: 35307732]
JAMA. 2018 Apr 3;319(13):1317-1318 [PMID: 29532063]
Neurology. 2014 Dec 9;83(24):2269-77 [PMID: 25391304]
Circulation. 2015 Nov 17;132(20):1920-30 [PMID: 26572668]
Ann Neurol. 2015 Mar;77(3):436-46 [PMID: 25546153]
IEEE Rev Biomed Eng. 2021;14:139-155 [PMID: 32746369]
Front Immunol. 2022 Oct 21;13:1025861 [PMID: 36341351]
Front Hum Neurosci. 2019 Mar 12;13:76 [PMID: 30914936]
Neurology. 2023 Jul 18;101(3):e324-e335 [PMID: 37202160]
IEEE J Biomed Health Inform. 2022 Jul;26(7):3529-3538 [PMID: 35263265]
Biomedicines. 2023 Jun 03;11(6): [PMID: 37371727]
Nature. 2015 Apr 23;520(7548):429-31 [PMID: 25903611]
Front Oncol. 2023 Jun 23;13:1181164 [PMID: 37427124]
Scientometrics. 2010 Aug;84(2):523-538 [PMID: 20585380]
JAMA Neurol. 2020 Jan 1;77(1):103-108 [PMID: 31633740]
Epilepsia. 2017 Apr;58(4):512-521 [PMID: 28276062]
Front Endocrinol (Lausanne). 2023 Sep 19;14:1252389 [PMID: 37795362]
Epilepsia. 2021 May;62(5):1057-1063 [PMID: 33675058]
Comput Biol Med. 2018 Sep 1;100:270-278 [PMID: 28974302]
Front Oncol. 2021 Jun 03;11:686726 [PMID: 34150654]
Antibiotics (Basel). 2023 Sep 06;12(9): [PMID: 37760709]
Epilepsia. 2019 Oct;60(10):2037-2047 [PMID: 31478577]
IEEE J Biomed Health Inform. 2021 Aug;25(8):2997-3008 [PMID: 33406048]
J Am Med Inform Assoc. 2020 Oct 1;27(10):1612-1624 [PMID: 33059367]
Front Immunol. 2023 Dec 19;14:1323115 [PMID: 38173726]
Int J Environ Res Public Health. 2021 May 27;18(11): [PMID: 34072232]
Eur J Med Res. 2023 Sep 1;28(1):311 [PMID: 37658418]
Science. 2015 Jul 17;349(6245):255-60 [PMID: 26185243]
Epilepsia. 2014 Apr;55(4):475-82 [PMID: 24730690]
Lancet. 2019 Dec 7;394(10214):2072 [PMID: 31818410]
J Nanobiotechnology. 2023 Aug 23;21(1):289 [PMID: 37612689]
Cereb Cortex. 2012 Sep;22(9):2139-47 [PMID: 22038907]
BMC Med Inform Decis Mak. 2023 May 22;23(1):96 [PMID: 37217878]
Curr Neuropharmacol. 2024;22(4):736-748 [PMID: 37888890]
Epilepsy Curr. 2022 May 22;22(5):279-281 [PMID: 36285200]

Word Cloud

Similar Articles

Cited By