Associations among environmental exposure to trace elements and biomarkers of early kidney damage in the pediatric population.

Manolo Ortega-Romero, Elodia Rojas-Lima, Juan Carlos Rubio-Gutiérrez, Octavio Gamaliel Aztatzi-Aguilar, Juana Narváez-Morales, Mariela Esparza-García, Ángel Barrera-Hernández, Miguel Ángel Mejia, Pablo Mendez-Hernández, Mara Medeiros, Olivier Christophe Barbier
Author Information
  1. Manolo Ortega-Romero: Unidad de Investigación en Nefrología y Metabolismo Mineral Óseo, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico.
  2. Elodia Rojas-Lima: Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.
  3. Juan Carlos Rubio-Gutiérrez: Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.
  4. Octavio Gamaliel Aztatzi-Aguilar: Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.
  5. Juana Narváez-Morales: Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.
  6. Mariela Esparza-García: Unidad de Investigación en Nefrología y Metabolismo Mineral Óseo, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico.
  7. Ángel Barrera-Hernández: Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.
  8. Miguel Ángel Mejia: Fundación Franco-Mexicana Para La Medicina, I.A.P, Ciudad de México, Mexico.
  9. Pablo Mendez-Hernández: Departamento de Calidad y Educación en Salud, Secretaría de Salud de Tlaxcala, Tlaxcala, Mexico.
  10. Mara Medeiros: Unidad de Investigación en Nefrología y Metabolismo Mineral Óseo, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico.
  11. Olivier Christophe Barbier: Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico. obarbier@cinvestav.mx.

Abstract

BACKGROUND: In kidney damage, molecular changes can be used as early damage kidney biomarkers, such as Kidney Injury Molecule-1 and Neutrophil gelatinase-associated lipocalin. These biomarkers are associated with toxic metal exposure or disturbed homeostasis of trace elements, which might lead to serious health hazards. This study aimed to evaluate the relationship between exposure to trace elements and early damage kidney biomarkers in a pediatric population.
METHODS: In Tlaxcala, a cross-sectional study was conducted on 914 healthy individuals. The participants underwent a medical review and a socio-environmental questionnaire. Five early damage kidney biomarkers were determined in the urine with Luminex, and molybdenum, copper, selenium, nickel, and iodine were measured with ICP-Mass.
RESULTS: The eGFR showed a median of 103.75 mL/min/1.73 m2. The median levels for molybdenum, copper, selenium, nickel, and iodine were 24.73 ng/mL, 73.35 ng/mL, 4.78 ng/mL, 83.68 ng/mL, and 361.83 ng/mL, respectively. Except for molybdenum and nickel, the other trace elements had significant associations with the eGFR and the early kidney damage biomarkers. Additionally, we report the association of different exposure scenarios with renal parameters.
DISCUSSION: and Conclusions. Among the explored metals, exposure to Cu and iodine impairs renal function. In contrast, Se may manifest as a beneficial metal. Interactions of Mo-Se and Mo-Iodine seem to alter the expression of NGAL; Mo-Cu for CLU; Mo-Cu, Mo-Se, and Mo-iodine for Cys-C and a-1MG; and Mo-Cu and Mo-iodine for KIM-1; were noticed. Our study could suggest that trace element interactions were associated with early kidney damage biomarkers.

Keywords

References

Akhtar M, Trombetta LD (2023) Low-level mancozeb exposure causes copper bioaccumulation in the renal cortex of rats leading to tubular injury. Environ Toxicol Pharmacol 100:104148 [PMID: 37182728]
AlBasher G, Alfarraj S, Alarifi S, Alkhtani S, Almeer R, Alsultan N et al (2020) Nephroprotective role of selenium nanoparticles against glycerol-induced acute kidney injury in rats. Biol Trace Elem Res 194:444–454 [PMID: 31264127]
Beji S, Kaaroud H, Ben Moussa F, Abderrahim E, Zghidi S, Ben Hamida F et al (2006) acute renal failure following mucosal administration of povidone iodine. Presse Medicale 35:61–63 [PMID: 16462667]
Benko I, Nagy G, Tanczos B, Ungvari E, Sztrik A, Eszenyi P et al (2012) Subacute toxicity of nano-selenium compared to other selenium species in mice. Environ Toxicol Chem 31:2812–2820 [PMID: 22927138]
Cao H, Gao F, Xia B, Xiao Q, Guo X, Hu G et al (2016) The co-induced effects of molybdenum and cadmium on the mrna expression of inflammatory cytokines and trace element contents in duck kidneys. Ecotoxicol Environ Saf 133:157–163 [PMID: 27448956]
Cardenas-Gonzalez M, Osorio-Yanez C, Gaspar-Ramirez O, Pavkovic M, Ochoa-Martinez A, Lopez-Ventura D et al (2016) Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1. Environ Res 150:653–662 [PMID: 27431456]
Costa Leite J, Keating E, Pestana D, Cruz Fernandes V, Maia ML, Norberto S, Pinto E, Moreira-Rosário A, Sintra D, Moreira B et al (2017) Iodine status and iodised salt consumption in portuguese school-aged children: the iogeneration study. Nutrients 9:458. https://doi.org/10.3390/nu9050458 [DOI: 10.3390/nu9050458]
Du G, Song X, Zhou F, Ouyang L, Li Q, Ruan S et al (2023) Association between multiple metal(loid)s exposure and renal function: A cross-sectional study from southeastern china. Environ Sci Pollut Res Int 30:94552–94564 [PMID: 37532974]
El-Boshy ME, Risha EF, Abdelhamid FM, Mubarak MS, Hadda TB (2015) Protective effects of selenium against cadmium induced hematological disturbances, immunosuppressive, oxidative stress and hepatorenal damage in rats. J Trace Elem Med Biol 29:104–110 [PMID: 24954678]
Eom SY, Yim DH, Huang M, Park CH, Kim GB, Yu SD et al (2020) Copper-zinc imbalance induces kidney tubule damage and oxidative stress in a population exposed to chronic environmental cadmium. Int Arch Occup Environ Health 93:337–344 [PMID: 31732794]
Fair PH, Dougherty WJ, Braddon SA (1985) Methyl mercury and selenium interaction in relation to mouse kidney gamma-glutamyltranspeptidase, ultrastructure, and function. Toxicol Appl Pharmacol 80:78–96 [PMID: 2862718]
Fairweather-Tait SJ, Cashman K (2015) Minerals and trace elements. World Rev Nutr Diet 111:45–52 [PMID: 25418388]
Filler G, Kobrzynski M, Sidhu HK, Belostotsky V, Huang SS, McIntyre C et al (2017) A cross-sectional study measuring vanadium and chromium levels in paediatric patients with ckd. BMJ Open 7:e014821 [PMID: 28592575]
Filler G, Qiu Y, Kaskel F, McIntyre CW (2021) Principles responsible for trace element concentrations in chronic kidney disease. Clin Nephrol 96:1–16 [PMID: 33960297]
Filler G, Felder S (2014) Trace elements in dialysis. Pediatric Nephrol 29:1329–1335
Franke K, Schone F, Berk A, Leiterer M, Flachowsky G (2008) Influence of dietary iodine on the iodine content of pork and the distribution of the trace element in the body. Eur J Nutr 47:40–46 [PMID: 18193376]
Fu S, Zhang L, Ma F, Xue S, Sun T, Xu Z (2022) Effects of selenium on chronic kidney disease: A mendelian randomization study. Nutrients 14:4458. https://doi.org/10.3390/nu14214458 [DOI: 10.3390/nu14214458]
Fuchs TC, Hewitt P (2011) Biomarkers for drug-induced renal damage and nephrotoxicity-an overview for applied toxicology. AAPS J 13:615–631 [PMID: 21969220]
Greenberg JH, Parikh CR (2017) Biomarkers for diagnosis and prognosis of aki in children: One size does not fit all. Clin J Am Soc Nephrol 12:1551–1557 [PMID: 28667085]
Gobierno de Tlaxcala (2016) Registro Estatal de Casos de ERC, Tlaxcala. https://www.saludtlax.gob.mx/documentos/revista/vol6/Revista_Invetigacion_y_Desarrollo_en_Salud_2018.pdf
Guo J, Wu C, Zhang J, Qi X, Lv S, Jiang S et al (2020) Prenatal exposure to mixture of heavy metals, pesticides and phenols and iq in children at 7 years of age: The smbcs study. Environ Int 139:105692 [PMID: 32251899]
Guo Y, Hu C, Xia B, Zhou X, Luo S, Gan R et al (2022) Iodine excess induces hepatic, renal and pancreatic injury in female mice as determined by attenuated total reflection fourier-transform infrared spectrometry. JApp Toxicol 42:600–616
Holzinger S, Anke M, Rohrig B, Gonzalez D (1998) Molybdenum intake of adults in germany and mexico. Analyst 123:447–450 [PMID: 9659706]
Hsu LI, Hsieh FI, Wang YH, Lai TS, Wu MM, Chen CJ et al (2017) Arsenic exposure from drinking water and the incidence of ckd in low to moderate exposed areas of taiwan: A 14-year prospective study. Am J Kidney Dis 70:787–797 [PMID: 28844585]
Jimenez-Cordova MI, Cardenas-Gonzalez M, Aguilar-Madrid G, Sanchez-Pena LC, Barrera-Hernandez A, Dominguez-Guerrero IA et al (2018) Evaluation of kidney injury biomarkers in an adult mexican population environmentally exposed to fluoride and low arsenic levels. Toxicol Appl Pharmacol 352:97–106 [PMID: 29800643]
Jung J, Park JY, Kim YC, Lee H, Kim E, Kim YL, Kim, YS, Lee JP, Kim H (2020) Long-term effects of air pollutants on mortality risk in patients with end-stage renal disease. Int J Environ Res Public Health 17:546. https://doi.org/10.3390/ijerph17020546
Kumar V, Kalita J, Bora HK, Misra UK (2016) Relationship of antioxidant and oxidative stress markers in different organs following copper toxicity in a rat model. Toxicol Appl Pharmacol 293:37–43 [PMID: 26780401]
Lei R, Wu C, Yang B, Ma H, Shi C, Wang Q et al (2008) Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: A rapid in vivo screening method for nanotoxicity. Toxicol Appl Pharmacol 232:292–301 [PMID: 18706438]
Liu J, Liu L, Jia Q, Zhang X, Jin X, Shen H (2019) Effects of excessive iodine intake on blood glucose, blood pressure, and blood lipids in adults. Biol Trace Elem Res 192:136–144 [PMID: 30798477]
Liu Y, Yuan Y, Xiao Y, Li Y, Yu Y, Mo T et al (2020) Associations of plasma metal concentrations with the decline in kidney function: A longitudinal study of chinese adults. Ecotoxicol Environ Saf 189:110006 [PMID: 31812020]
Luo X, Huang D, Xiao S, Lei L, Wu K, Yang Y et al (2023) Associations between co-exposure to multiple metals and renal function: A cross-sectional study in guangxi, china. Environ Sci Pollut Res Int 30:2637–2648 [PMID: 35932350]
Mahapatra D, Chandra AK (2017) Biphasic action of iodine in excess at different doses on ovary in adult rats. J Trace Elements Med Biol: Organ Soc Minerals Trace Elements 39:210–220 [DOI: 10.1016/j.jtemb.2016.10.006]
Manfro RC, Comerlato L, Berdichevski RH, Ribeiro AR, Denicol NT, Berger M et al (2002) Nephrotoxic acute renal failure in a renal transplant patient with recurrent lymphocele treated with povidone-iodine irrigation. Am J Kidney Dis 40:655–657 [PMID: 12200820]
Mascarenhas S, Mutnuri S, Ganguly A (2017) Deleterious role of trace elements - silica and lead in the development of chronic kidney disease. Chemosphere 177:239–249 [PMID: 28292724]
Nan Y, Yang J, Ma L, Jin L, Bai Y. 2022. Associations of nickel exposure and kidney function in u.S. Adults, nhanes 2017–2018. J Trace Elem Med Biol 74:127065
Papadopoulos P, Iordanou S, Georgiou F, Kalifatidis D, Herodotou E, Timiliotou-Matsentidou C (2022) Povidone-iodine-induced acute kidney injury in a 23-year-old woman: The first clinical case report from the republic of cyprus. Cureus 14:e24034 [PMID: 35463562]
Park S, Kim BK, Park SK (2022) Effects of fisetin, a plant-derived flavonoid, on response to oxidative stress, aging, and age-related diseases in caenorhabditis elegans. Pharmaceuticals 15:1528. https://doi.org/10.3390/ph15121528
Qin HB, Zhu JM, Liang L, Wang MS, Su H (2013) The bioavailability of selenium and risk assessment for human selenium poisoning in high-se areas, china. Environ Int 52:66–74 [PMID: 23291099]
Quan J, Li Y, Shen M, Lu Y, Yuan H, Yi B et al (2023) Co-exposure to multiple metals and renal tubular damage: A population-based cross-sectional study in china’s rural regions. Environ Sci Pollut Res Int 30:52421–52432 [PMID: 36829093]
Sachdeva S, Maret W (2021) Comparative outcomes of exposing human liver and kidney cell lines to tungstate and molybdate. Toxicol Mech Methods 31:690–698 [PMID: 34320920]
Saito M, Arakaki R, Yamada A, Tsunematsu T, Kudo Y, Ishimaru N (2016) Molecular mechanisms of nickel allergy. Int J Mol Sci 17:202. https://doi.org/10.3390/ijms17020202 [DOI: 10.3390/ijms17020202]
Schwartz GJFS (2007) Glomerular filtration rate measurement and estimation in chronic kidney disease. Pediatr Nephrol 22(11):1839–1848 [PMID: 17216261]
Shanu A, Groebler L, Kim HB, Wood S, Weekley CM, Aitken JB et al (2013) Selenium inhibits renal oxidation and inflammation but not acute kidney injury in an animal model of rhabdomyolysis. Antioxid Redox Signal 18:756–769 [PMID: 22937747]
Shen Y, Yin Z, Lv Y, Luo J, Shi W, Fang J et al (2020) Plasma element levels and risk of chronic kidney disease in elderly populations (>/= 90 years old). Chemosphere 254:126809 [PMID: 32334258]
Shiue I, Hristova K (2014) Higher urinary heavy metal, phthalate and arsenic concentrations accounted for 3–19% of the population attributable risk for high blood pressure: Us nhanes, 2009–2012. Hypertens Res 37:1075–1081 [PMID: 25077919]
Skroder H, Hawkesworth S, Kippler M, El Arifeen S, Wagatsuma Y, Moore SE et al (2015) Kidney function and blood pressure in preschool-aged children exposed to cadmium and arsenic–potential alleviation by selenium. Environ Res 140:205–213 [PMID: 25863594]
Smpokou ET, Gonzalez-Quiroz M, Martins C, Alvito P, Le Blond J, Glaser J et al (2019) Environmental exposures in young adults with declining kidney function in a population at risk of mesoamerican nephropathy. Occup Environ Med 76:920–926 [PMID: 31562235]
Teng CJ, Hu YW, Chen SC, Yeh CM, Chiang HL, Chen TJ, Liu CJ (2016) Use of radioactive iodine for thyroid cancer and risk of second primary malignancy: a nationwide population-based study. J Natl Cancer Inst 108(2):djv314. https://doi.org/10.1093/jnci/djv314
Tsai HJ, Hung CH, Wang CW, Tu HP, Li CH, Tsai CC, Lin WY, Chen SC, Kuo CH (2021) Associations among heavy metals and proteinuria and chronic kidney disease. Diagnostics 11:282. https://doi.org/10.3390/diagnostics11020282 [DOI: 10.3390/diagnostics11020282]
Vaidya VS, Ferguson MA, Bonventre JV (2008) Biomarkers of acute kidney injury. Annu Rev Pharmacol Toxicol 48:463–493 [PMID: 17937594]
Valcke M, Ouellet N, Dube M, Laouan Sidi EA, LeBlanc A, Normandin L et al (2019) Biomarkers of cadmium, lead and mercury exposure in relation with early biomarkers of renal dysfunction and diabetes: Results from a pilot study among aging canadians. Toxicol Lett 312:148–156 [PMID: 31100493]
van den Belt SM, Gracchi V, de Zeeuw D, Heerspink HJL (2018) How to measure and monitor albuminuria in healthy toddlers? PLoS ONE 13:e0199309 [PMID: 29927975]
Wang R, Long T, He J, Xu Y, Wei Y, Zhang Y et al (2022a) Associations of multiple plasma metals with chronic kidney disease in patients with diabetes. Ecotoxicol Environ Saf 244:114048 [PMID: 36063616]
Wang T, Lv Z, Fu X, Zheng S, Yang Z, Zou X et al (2022b) Associations between plasma metal levels and mild renal impairment in the general population of southern china. Ecotoxicol Environ Saf 247:114209 [PMID: 36308880]
Wu D, Yang H, Luo J, Zhang G, Li S, Wang M et al (2014) Age- and gender-specific reference values for urine albumin/creatinine ratio in children of southwest china. Clin Chim Acta 431:239–243 [PMID: 24583224]
Xia B, Cao H, Luo J, Liu P, Guo X, Hu G et al (2015) The co-induced effects of molybdenum and cadmium on antioxidants and heat shock proteins in duck kidneys. Biol Trace Elem Res 168:261–268 [PMID: 25940730]
Xiao J, Cui HM, Yang F, Peng X, Cui Y (2011) Effect of dietary high molybdenum on the cell cycle and apoptosis of kidney in broilers. Biol Trace Elem Res 142:523–531 [PMID: 20661661]
Xie Y, Liu F, Zhang X, Jin Y, Li Q, Shen H et al (2022) Benefits and risks of essential trace elements in chronic kidney disease: A narrative review. Ann Transl Med 10:1400 [PMID: 36660676]
Yang F, Yi X, Guo J, Xu S, Xiao Y, Huang X et al (2019) Association of plasma and urine metals levels with kidney function: A population-based cross-sectional study in china. Chemosphere 226:321–328 [PMID: 30939371]
Yin H, Zuo Z, Yang Z, Guo H, Fang J, Cui H et al (2021) Nickel induces autophagy via pi3k/akt/mtor and ampk pathways in mouse kidney. Ecotoxicol Environ Saf 223:112583 [PMID: 34352574]
Yu Y, Meng W, Kuang H, Chen X, Zhu X, Wang L et al (2023) Association of urinary exposure to multiple metal(loid)s with kidney function from a national cross-sectional study. The Sci Total Environ 882:163100 [PMID: 37023822]
Zhang JW, Lin Y, Liu YM, Wang MM, Gong JG, Shen XG et al (2023) Excess selenium intake is associated with microalbuminuria in female but not in male among adults with obesity: Results from nhanes 2009–2018. Front Nutr 10:1043395 [PMID: 36761214]
Zhou F, Yin G, Gao Y, Liu D, Xie J, Ouyang L et al (2019) Toxicity assessment due to prenatal and lactational exposure to lead, cadmium and mercury mixtures. Environ Int 133:105192 [PMID: 31639605]

Grants

  1. 558205/Conahcyt
  2. 272556/Conahcyt
  3. 701988/Conahcyt
  4. Pronaii 321320/Conahcyt

MeSH Term

Humans
Biomarkers
Child
Male
Female
Trace Elements
Environmental Exposure
Cross-Sectional Studies
Adolescent
Lipocalin-2
Glomerular Filtration Rate
Copper
Selenium
Kidney Diseases
Kidney
Child, Preschool
Nickel

Word Cloud

Similar Articles

Cited By