Chibawanye I Ene, Christina Abi Faraj, Thomas H Beckham, Jeffrey S Weinberg, Clark R Andersen, Ali S Haider, Ganesh Rao, Sherise D Ferguson, Christopher A Alvarez-Brenkenridge, Betty Y S Kim, Amy B Heimberger, Ian E McCutcheon, Sujit S Prabhu, Chenyang Michael Wang, Amol J Ghia, Susan L McGovern, Caroline Chung, Mary Frances McAleer, Martin C Tom, Subha Perni, Todd A Swanson, Debra N Yeboa, Tina M Briere, Jason T Huse, Gregory N Fuller, Frederick F Lang, Jing Li, Dima Suki, Raymond E Sawaya
With improvements in survival for patients with metastatic cancer, long-term local control of brain metastases has become an increasingly important clinical priority. While consensus guidelines recommend surgery followed by stereotactic radiosurgery (SRS) for lesions >3 cm, smaller lesions (≤3 cm) treated with SRS alone elicit variable responses. To determine factors influencing this variable response to SRS, we analyzed outcomes of brain metastases ≤3 cm diameter in patients with no prior systemic therapy treated with frame-based single-fraction SRS. Following SRS, 259 out of 1733 (15%) treated lesions demonstrated MRI findings concerning for local treatment failure (LTF), of which 202 /1733 (12%) demonstrated LTF and 54/1733 (3%) had an adverse radiation effect. Multivariate analysis demonstrated tumor size (>1.5 cm) and melanoma histology were associated with higher LTF rates. Our results demonstrate that brain metastases ≤3 cm are not uniformly responsive to SRS and suggest that prospective studies to evaluate the effect of SRS alone or in combination with surgery on brain metastases ≤3 cm matched by tumor size and histology are warranted. These studies will help establish multi-disciplinary treatment guidelines that improve local control while minimizing radiation necrosis during treatment of brain metastasis ≤3 cm.
Mol Cancer Ther. 2021 Nov;20(11):2129-2139
[PMID:
34413128]
Radiat Oncol. 2011 May 15;6:48
[PMID:
21575163]
Lancet. 2004 May 22;363(9422):1665-72
[PMID:
15158627]
Front Oncol. 2020 Jul 07;10:781
[PMID:
32733787]
Nat Med. 2018 Dec;24(12):1845-1851
[PMID:
30397353]
Handb Clin Neurol. 2018;149:27-42
[PMID:
29307358]
Nat Rev Cancer. 2020 Jan;20(1):26-41
[PMID:
31601988]
Adv Radiat Oncol. 2019 Jul 26;5(1):43-52
[PMID:
32051889]
J Neurosurg. 2014 Aug;121(2):338-48
[PMID:
24785322]
Cancer Med. 2019 Nov;8(16):6809-6831
[PMID:
31568689]
J Clin Oncol. 2022 Jul 10;40(20):2271-2276
[PMID:
35561283]
Int J Radiat Oncol Biol Phys. 2019 Mar 1;103(3):618-630
[PMID:
30395902]
World Neurosurg. 2021 Jul;151:e839-e856
[PMID:
33974987]
Am J Clin Oncol. 2023 Nov 1;46(11):486-495
[PMID:
37580873]
J Neurooncol. 2010 Jan;96(1):45-68
[PMID:
19960227]
J Neurosurg. 2019 Feb 15;132(2):512-517
[PMID:
30771783]
J Neurosurg. 2015 Aug;123(2):373-86
[PMID:
25978710]
Lancet Oncol. 2009 Nov;10(11):1037-44
[PMID:
19801201]
J Clin Oncol. 2022 Feb 10;40(5):492-516
[PMID:
34932393]
Eur Radiol. 2021 Jun;31(6):4114-4129
[PMID:
33241519]
Oncotarget. 2016 Mar 15;7(11):12318-30
[PMID:
26848525]
Int J Mol Sci. 2020 Dec 07;21(23):
[PMID:
33297519]
Int J Radiat Oncol Biol Phys. 2016 Jul 15;95(4):1142-8
[PMID:
27209508]
Neuro Oncol. 2019 Feb 14;21(2):242-251
[PMID:
30265328]
Curr Opin Oncol. 2021 Nov 1;33(6):597-607
[PMID:
34534142]
J Neurosurg. 2018 May 4;130(3):804-811
[PMID:
29726782]
J Neurooncol. 2017 Jul;133(3):595-602
[PMID:
28500560]
Int J Radiat Biol. 2019 Jul;95(7):936-939
[PMID:
31120369]
Lancet Oncol. 2017 Aug;18(8):1040-1048
[PMID:
28687375]
J Clin Oncol. 2011 Jan 10;29(2):134-41
[PMID:
21041710]
Lancet Oncol. 2017 Aug;18(8):1049-1060
[PMID:
28687377]
Neuro Oncol. 2020 May 15;22(5):639-651
[PMID:
31793634]
BMC Cancer. 2023 Mar 25;23(1):273
[PMID:
36964529]
Neurosurgery. 2003 Aug;53(2):272-80; discussion 280-1
[PMID:
12925241]
Pract Radiat Oncol. 2022 Jul-Aug;12(4):265-282
[PMID:
35534352]
Med Phys. 2021 Apr;48(4):2038-2049
[PMID:
33590493]
J Neurooncol. 2015 Oct;125(1):149-56
[PMID:
26307446]