Mapping the cellular biogeography of human bone marrow niches using single-cell transcriptomics and proteomic imaging.

Shovik Bandyopadhyay, Michael P Duffy, Kyung Jin Ahn, Jonathan H Sussman, Minxing Pang, David Smith, Gwendolyn Duncan, Iris Zhang, Jeffrey Huang, Yulieh Lin, Barbara Xiong, Tamjid Imtiaz, Chia-Hui Chen, Anusha Thadi, Changya Chen, Jason Xu, Melissa Reichart, Zachary Martinez, Caroline Diorio, Chider Chen, Vinodh Pillai, Oraine Snaith, Derek Oldridge, Siddharth Bhattacharyya, Ivan Maillard, Martin Carroll, Charles Nelson, Ling Qin, Kai Tan
Author Information
  1. Shovik Bandyopadhyay: Cellular and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
  2. Michael P Duffy: Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
  3. Kyung Jin Ahn: Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
  4. Jonathan H Sussman: Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
  5. Minxing Pang: Applied Mathematics & Computational Science Graduate Group, University of Pennsylvania, Philadelphia, PA, USA.
  6. David Smith: Center for Single Cell Biology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
  7. Gwendolyn Duncan: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
  8. Iris Zhang: Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA.
  9. Jeffrey Huang: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
  10. Yulieh Lin: Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
  11. Barbara Xiong: Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
  12. Tamjid Imtiaz: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
  13. Chia-Hui Chen: Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
  14. Anusha Thadi: Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
  15. Changya Chen: Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
  16. Jason Xu: Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
  17. Melissa Reichart: Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
  18. Zachary Martinez: Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
  19. Caroline Diorio: Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
  20. Chider Chen: Department of Oral and Maxillofacial Surgery/Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
  21. Vinodh Pillai: Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
  22. Oraine Snaith: Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
  23. Derek Oldridge: Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
  24. Siddharth Bhattacharyya: Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
  25. Ivan Maillard: Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
  26. Martin Carroll: Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
  27. Charles Nelson: Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
  28. Ling Qin: Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. Electronic address: qinling@pennmedicine.upenn.edu.
  29. Kai Tan: Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Single Cell Biology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. Electronic address: tank1@chop.edu.

Abstract

Non-hematopoietic cells are essential contributors to hematopoiesis. However, heterogeneity and spatial organization of these cells in human bone marrow remain largely uncharacterized. We used single-cell RNA sequencing (scRNA-seq) to profile 29,325 non-hematopoietic cells and discovered nine transcriptionally distinct subtypes. We simultaneously profiled 53,417 hematopoietic cells and predicted their interactions with non-hematopoietic subsets. We employed co-detection by indexing (CODEX) to spatially profile over 1.2 million cells. We integrated scRNA-seq and CODEX data to link predicted cellular signaling with spatial proximity. Our analysis revealed a hyperoxygenated arterio-endosteal neighborhood for early myelopoiesis, and an adipocytic localization for early hematopoietic stem and progenitor cells (HSPCs). We used our CODEX atlas to annotate new images and uncovered mesenchymal stromal cell (MSC) expansion and spatial neighborhoods co-enriched for leukemic blasts and MSCs in acute myeloid leukemia (AML) patient samples. This spatially resolved, multiomic atlas of human bone marrow provides a reference for investigation of cellular interactions that drive hematopoiesis.

Keywords

References

  1. Nat Immunol. 2005 Jul;6(7):663-70 [PMID: 15951813]
  2. Theranostics. 2020 Jan 1;10(1):426-436 [PMID: 31903130]
  3. Nature. 2003 Oct 23;425(6960):841-6 [PMID: 14574413]
  4. Nature. 2019 May;569(7755):222-228 [PMID: 30971824]
  5. Blood. 2011 Jan 13;117(2):719-26 [PMID: 20944072]
  6. Nat Commun. 2018 Jun 22;9(1):2449 [PMID: 29934585]
  7. Elife. 2020 Apr 14;9: [PMID: 32286228]
  8. Cell Death Dis. 2020 Aug 13;11(8):616 [PMID: 32792521]
  9. Cell. 2018 Sep 20;175(1):43-56.e21 [PMID: 30241615]
  10. Blood. 2020 Nov 12;136(20):2296-2307 [PMID: 32766876]
  11. Nature. 2013 Mar 14;495(7440):231-5 [PMID: 23434755]
  12. Nat Immunol. 2021 Dec;22(12):1577-1589 [PMID: 34811546]
  13. Cancer Discov. 2023 Mar 1;13(3):746-765 [PMID: 36455613]
  14. Nature. 2010 Aug 12;466(7308):829-34 [PMID: 20703299]
  15. Clin Transl Med. 2021 Dec;11(12):e650 [PMID: 34965030]
  16. Cell. 2018 Aug 9;174(4):968-981.e15 [PMID: 30078711]
  17. Leukemia. 2013 Oct;27(10):1970-80 [PMID: 23877794]
  18. Stem Cell Res Ther. 2016 Jan 11;7:4 [PMID: 26753846]
  19. Nature. 2014 Jan 16;505(7483):327-34 [PMID: 24429631]
  20. Blood. 2013 Apr 11;121(15):2891-901 [PMID: 23412095]
  21. Nature. 2003 Oct 23;425(6960):836-41 [PMID: 14574412]
  22. Blood. 2023 Dec 28;142(26):2282-2295 [PMID: 37774374]
  23. Science. 2020 Jan 24;367(6476):405-411 [PMID: 31974247]
  24. Immunity. 2002 Oct;17(4):463-72 [PMID: 12387740]
  25. Nat Methods. 2021 Oct;18(10):1181-1191 [PMID: 34594031]
  26. Nat Rev Mol Cell Biol. 2019 May;20(5):303-320 [PMID: 30745579]
  27. Elife. 2014 Sep 25;3:e03696 [PMID: 25255216]
  28. Nat Methods. 2017 Nov;14(11):1083-1086 [PMID: 28991892]
  29. Elife. 2023 Mar 06;12: [PMID: 36876630]
  30. Immunity. 2018 Oct 16;49(4):627-639.e6 [PMID: 30314756]
  31. Nature. 2013 Mar 14;495(7440):227-30 [PMID: 23434756]
  32. Sci Rep. 2017 Dec 4;7(1):16878 [PMID: 29203879]
  33. Immunity. 2016 Dec 20;45(6):1219-1231 [PMID: 27913094]
  34. Nat Commun. 2021 Feb 17;12(1):1088 [PMID: 33597522]
  35. Blood. 2010 Jun 17;115(24):5061-8 [PMID: 20393130]
  36. Front Cell Dev Biol. 2021 Jul 22;9:705410 [PMID: 34368155]
  37. Cell. 2023 Jan 19;186(2):382-397.e24 [PMID: 36669473]
  38. Nat Protoc. 2023 Nov;18(11):3565-3613 [PMID: 37816904]
  39. Nat Rev Cancer. 2020 May;20(5):285-298 [PMID: 32112045]
  40. Circulation. 2010 Oct 5;122(14):1413-25 [PMID: 20855662]
  41. World J Stem Cells. 2015 Mar 26;7(2):470-6 [PMID: 25815130]
  42. Blood. 2022 Apr 7;139(14):2198-2211 [PMID: 34864916]
  43. Cytotherapy. 2006;8(4):315-7 [PMID: 16923606]
  44. J Immunol. 2007 Mar 15;178(6):3511-20 [PMID: 17339446]
  45. Cell Syst. 2015 Dec 23;1(6):417-425 [PMID: 26771021]
  46. Nat Biotechnol. 2022 Apr;40(4):555-565 [PMID: 34795433]
  47. Exp Mol Med. 2022 Apr;54(4):483-492 [PMID: 35365767]
  48. JCI Insight. 2018 Dec 6;3(23): [PMID: 30518681]
  49. Nat Cell Biol. 2017 Aug;19(8):891-903 [PMID: 28714970]
  50. Cell. 2019 Jun 13;177(7):1915-1932.e16 [PMID: 31130381]
  51. Nat Biotechnol. 2019 Dec;37(12):1458-1465 [PMID: 31792411]
  52. Am Fam Physician. 2002 Mar 1;65(5):841-8 [PMID: 11898956]
  53. Leukemia. 2019 Jul;33(7):1783-1796 [PMID: 30679801]
  54. Blood Rev. 2006 May;20(3):161-71 [PMID: 16364518]
  55. Science. 2011 May 6;332(6030):687-96 [PMID: 21551058]
  56. Blood. 2020 Dec 17;136(25):2893-2904 [PMID: 32614947]
  57. Nature. 2022 Apr;604(7906):534-540 [PMID: 35418685]
  58. Cell Syst. 2019 Apr 24;8(4):329-337.e4 [PMID: 30954475]
  59. iScience. 2023 May 23;26(6):106943 [PMID: 37332612]
  60. Nat Immunol. 2021 Jun;22(6):769-780 [PMID: 34017122]
  61. Int J Biol Sci. 2021 Oct 11;17(15):4192-4206 [PMID: 34803492]
  62. Front Cell Dev Biol. 2021 Mar 12;9:622519 [PMID: 33777933]
  63. Cell. 2020 Sep 3;182(5):1341-1359.e19 [PMID: 32763154]
  64. Blood. 2015 Jun 4;125(23):3542-50 [PMID: 25833962]
  65. Nat Cancer. 2021 Nov;2(11):1204-1223 [PMID: 35122057]
  66. Haematologica. 2019 Sep;104(9):1731-1743 [PMID: 30792196]
  67. Nat Biotechnol. 2007 Nov;25(11):1315-21 [PMID: 17952057]
  68. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  69. Am J Pathol. 1996 Nov;149(5):1493-9 [PMID: 8909239]
  70. Dev Cell. 2021 Jul 12;56(13):1848-1860 [PMID: 34146467]
  71. Nature. 2009 Jul 9;460(7252):259-63 [PMID: 19516257]
  72. Cell Rep. 2019 Jan 15;26(3):652-669.e6 [PMID: 30650358]
  73. Nat Cardiovasc Res. 2023 Dec;2(12):1277-1290 [PMID: 38344689]
  74. Nature. 2017 Apr 6;544(7648):53-58 [PMID: 28355185]
  75. Science. 2019 Sep 20;365(6459): [PMID: 31488706]
  76. Nature. 2021 Oct;598(7880):327-331 [PMID: 34588693]
  77. Nature. 2012 Jan 25;481(7382):457-62 [PMID: 22281595]
  78. Am J Physiol Cell Physiol. 2022 Feb 1;322(2):C185-C196 [PMID: 34878922]
  79. Stem Cell Reports. 2020 Aug 11;15(2):317-325 [PMID: 32649902]
  80. Trends Endocrinol Metab. 2016 Jun;27(6):392-403 [PMID: 27094502]
  81. Nat Cell Biol. 2020 Jan;22(1):38-48 [PMID: 31871321]
  82. Immunity. 2006 Dec;25(6):977-88 [PMID: 17174120]

Grants

  1. P30 AR069619/NIAMS NIH HHS
  2. R01 AG069401/NIA NIH HHS
  3. T32 HL007439/NHLBI NIH HHS
  4. U54 HL156090/NHLBI NIH HHS
  5. T32 GM007170/NIGMS NIH HHS
  6. F30 CA277965/NCI NIH HHS
  7. U2C CA233285/NCI NIH HHS
  8. T32 DK007314/NIDDK NIH HHS
  9. U54 HL165442/NHLBI NIH HHS

MeSH Term

Humans
Single-Cell Analysis
Bone Marrow
Hematopoietic Stem Cells
Mesenchymal Stem Cells
Proteomics
Transcriptome
Leukemia, Myeloid, Acute
Hematopoiesis
Stem Cell Niche
Bone Marrow Cells

Word Cloud

Similar Articles

Cited By