Accelerating ionizable lipid discovery for mRNA delivery using machine learning and combinatorial chemistry.

Bowen Li, Idris O Raji, Akiva G R Gordon, Lizhuang Sun, Theresa M Raimondo, Favour A Oladimeji, Allen Y Jiang, Andrew Varley, Robert S Langer, Daniel G Anderson
Author Information
  1. Bowen Li: David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. bw.li@utoronto.ca. ORCID
  2. Idris O Raji: David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. ORCID
  3. Akiva G R Gordon: David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. ORCID
  4. Lizhuang Sun: Department of Statistics, University of Michigan, Ann Arbor, MI, USA.
  5. Theresa M Raimondo: David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. ORCID
  6. Favour A Oladimeji: Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
  7. Allen Y Jiang: David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. ORCID
  8. Andrew Varley: Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada. ORCID
  9. Robert S Langer: David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. ORCID
  10. Daniel G Anderson: David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. dgander@mit.edu. ORCID

Abstract

To unlock the full promise of messenger (mRNA) therapies, expanding the toolkit of lipid nanoparticles is paramount. However, a pivotal component of lipid nanoparticle development that remains a bottleneck is identifying new ionizable lipids. Here we describe an accelerated approach to discovering effective ionizable lipids for mRNA delivery that combines machine learning with advanced combinatorial chemistry tools. Starting from a simple four-component reaction platform, we create a chemically diverse library of 584 ionizable lipids. We screen the mRNA transfection potencies of lipid nanoparticles containing those lipids and use the data as a foundational dataset for training various machine learning models. We choose the best-performing model to probe an expansive virtual library of 40,000 lipids, synthesizing and experimentally evaluating the top 16 lipids flagged. We identify lipid 119-23, which outperforms established benchmark lipids in transfecting muscle and immune cells in several tissues. This approach facilitates the creation and evaluation of versatile ionizable lipid libraries, advancing the formulation of lipid nanoparticles for precise mRNA delivery.

References

Miao, L., Zhang, Y. & Huang, L. mRNA vaccine for cancer immunotherapy. Mol. Cancer 20, 41 (2021). [DOI: 10.1186/s12943-021-01335-5]
Tartof, S. Y. et al. Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. Lancet 398, 1407–1416 (2021). [DOI: 10.1016/S0140-6736(21)02183-8]
Trepotec, Z., Lichtenegger, E., Plank, C., Aneja, M. K. & Rudolph, C. Delivery of mRNA therapeutics for the treatment of hepatic diseases. Mol. Ther. 27, 794–802 (2019). [DOI: 10.1016/j.ymthe.2018.12.012]
Blanchard, E. L. et al. Treatment of influenza and SARS-CoV-2 infections via mRNA-encoded Cas13a in rodents. Nat. Biotechnol. 39, 717–726 (2021). [DOI: 10.1038/s41587-021-00822-w]
Qiu, M. et al. Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of Angptl3. Proc. Natl Acad. Sci. USA 118, e2020401118 (2021). [DOI: 10.1073/pnas.2020401118]
Neklesa, T. K., Winkler, J. D. & Crews, C. M. Targeted protein degradation by PROTACs. Pharm. Ther. 174, 138–144 (2017). [DOI: 10.1016/j.pharmthera.2017.02.027]
Kim, M. et al. Engineered ionizable lipid nanoparticles for targeted delivery of RNA therapeutics into different types of cells in the liver. Sci. Adv. 7, eabf4398 (2021). [DOI: 10.1126/sciadv.abf4398]
Han, X. et al. An ionizable lipid toolbox for RNA delivery. Nat. Commun. 12, 7233 (2021). [DOI: 10.1038/s41467-021-27493-0]
Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172–176 (2010). [DOI: 10.1038/nbt.1602]
Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018). [DOI: 10.1056/NEJMoa1716153]
Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020). [DOI: 10.1056/NEJMoa2034577]
Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021). [DOI: 10.1056/NEJMoa2035389]
Zhang, Y., Sun, C., Wang, C., Jankovic, K. E. & Dong, Y. Lipids and lipid derivatives for RNA delivery. Chem. Rev. 121, 12181–12277 (2021). [DOI: 10.1021/acs.chemrev.1c00244]
Qiu, M. et al. Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis. Proc. Natl Acad. Sci. USA 119, e2116271119 (2022). [DOI: 10.1073/pnas.2116271119]
Li, B. et al. Enhancing the immunogenicity of lipid-nanoparticle mRNA vaccines by adjuvanting the ionizable lipid and the mRNA. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01082-6 (2023).
Li, B. et al. Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing. Nat. Biotechnol. 41, 1410–1415 (2023). [DOI: 10.1038/s41587-023-01679-x]
Akinc, A. et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat. Biotechnol. 26, 561–569 (2008). [DOI: 10.1038/nbt1402]
Whitehead, K. A. et al. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nat. Commun. 5, 4277 (2014). [DOI: 10.1038/ncomms5277]
Dong, Y. et al. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc. Natl Acad. Sci. USA 111, 3955–3960 (2014). [DOI: 10.1073/pnas.1322937111]
Miao, L. et al. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nat. Biotechnol. 37, 1174–1185 (2019). [DOI: 10.1038/s41587-019-0247-3]
Chen, J. et al. Combinatorial design of ionizable lipid nanoparticles for muscle-selective mRNA delivery with minimized off-target effects. Proc. Natl Acad. Sci. USA 120, e2309472120 (2023). [DOI: 10.1073/pnas.2309472120]
Maier, M. A. et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol. Ther. 21, 1570–1578 (2013). [DOI: 10.1038/mt.2013.124]
Kaczmarek, J. C. et al. Optimization of a degradable polymer-lipid nanoparticle for potent systemic delivery of mRNA to the lung endothelium and immune cells. Nano Lett. 18, 6449–6454 (2018). [DOI: 10.1021/acs.nanolett.8b02917]
Ekins, S. et al. Exploiting machine learning for end-to-end drug discovery and development. Nat. Mater. 18, 435–441 (2019). [DOI: 10.1038/s41563-019-0338-z]
Yamankurt, G. et al. Exploration of the nanomedicine-design space with high-throughput screening and machine learning. Nat. Biomed. Eng. 3, 318–327 (2019). [DOI: 10.1038/s41551-019-0351-1]
Blagus, R. & Lusa, L. SMOTE for high-dimensional class-imbalanced data. BMC Bioinform. 14, 106 (2013). [DOI: 10.1186/1471-2105-14-106]
Yap, C. W. PaDEL-Descriptor: an open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem. 32, 1466–1474 (2011). [DOI: 10.1002/jcc.21707]
Bergstra, J. & Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012).
Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020). [DOI: 10.1038/s41565-020-0669-6]
Liu, S. et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR–Cas gene editing. Nat. Mater. 20, 701–710 (2021). [DOI: 10.1038/s41563-020-00886-0]
Sahu, I., Haque, A. K. M. A., Weidensee, B., Weinmann, P. & Kormann, M. S. D. Recent developments in mRNA-based protein supplementation therapy to target lung diseases. Mol. Ther. J. Am. Soc. Gene Ther. 27, 803–823 (2019). [DOI: 10.1016/j.ymthe.2019.02.019]
Chakraborty, C., Sharma, A. R., Bhattacharya, M. & Lee, S.-S. From COVID-19 to cancer mRNA vaccines: moving from bench to clinic in the vaccine landscape. Front. Immunol. 12, 679344 (2021). [DOI: 10.3389/fimmu.2021.679344]
Gan, Z. et al. Nanoparticles containing constrained phospholipids deliver mRNA to liver immune cells in vivo without targeting ligands. Bioeng. Transl. Med. 5, e10161 (2020). [DOI: 10.1002/btm2.10161]

MeSH Term

Machine Learning
Lipids
RNA, Messenger
Combinatorial Chemistry Techniques
Nanoparticles
Animals
Humans
Mice

Chemicals

Lipids
RNA, Messenger

Word Cloud

Similar Articles

Cited By