Legumes are renowned for their distinctive biological characteristic of forming symbiotic associations with soil bacteria, mostly belonging to the familiy, leading to the establishment of symbiotic root nodules. Within these nodules, rhizobia play a pivotal role in converting atmospheric nitrogen into a plant-assimilable form. However, it has been discerned that root nodules of legumes are not exclusively inhabited by rhizobia; non-rhizobial endophytic bacteria also reside within them, yet their functions remain incompletely elucidated. This comprehensive review synthesizes available data, revealing that and are the most prevalent genera of nodule endophytic bacteria, succeeded by , , , , and . To date, the bibliographic data available show that followed by and are the main hosts for nodule endophytic bacteria. Clustering analysis consistently supports the prevalence of and as the most abundant nodule endophytic bacteria, alongside , , and . Although non-rhizobial populations within nodules do not induce nodule formation, their presence is associated with various plant growth-promoting properties (PGPs). These properties are known to mediate important mechanisms such as phytostimulation, biofertilization, biocontrol, and stress tolerance, emphasizing the multifaceted roles of nodule endophytes. Importantly, interactions between non-rhizobia and rhizobia within nodules may exert influence on their leguminous host plants. This is particularly shown by co-inoculation of legumes with both types of bacteria, in which synergistic effects on plant growth, yield, and nodulation are often measured. Moreover these effects are pronounced under both stress and non-stress conditions, surpassing the impact of single inoculations with rhizobia alone.
Int J Syst Evol Microbiol. 2007 Apr;57(Pt 4):784-788
[PMID:
17392207]
Plants (Basel). 2021 Aug 26;10(9):
[PMID:
34579311]
PLoS Genet. 2015 Jun 04;11(6):e1005280
[PMID:
26042417]
J Appl Microbiol. 2021 Dec;131(6):2929-2940
[PMID:
34003543]
Microbiol Res. 2020 Jan;231:126356
[PMID:
31722286]
Arch Microbiol. 2009 Jan;191(1):35-46
[PMID:
18784916]
Bioresour Technol. 2008 Jul;99(11):4544-50
[PMID:
17826983]
Arch Microbiol. 2022 Dec 28;205(1):45
[PMID:
36576567]
Int J Mol Sci. 2022 Oct 10;23(19):
[PMID:
36233333]
Curr Microbiol. 2024 Jan 11;81(2):60
[PMID:
38206520]
Braz J Microbiol. 2018 Apr - Jun;49(2):269-278
[PMID:
29117917]
Int J Syst Evol Microbiol. 2013 Dec;63(Pt 12):4433-4438
[PMID:
23852155]
Curr Microbiol. 2022 Feb 14;79(4):103
[PMID:
35157135]
Plants (Basel). 2020 Nov 05;9(11):
[PMID:
33167465]
Syst Appl Microbiol. 2012 Jun;35(4):239-45
[PMID:
22463809]
Int J Syst Evol Microbiol. 2015 Nov;65(11):3853-3860
[PMID:
28875919]
Microorganisms. 2023 Jul 29;11(8):
[PMID:
37630501]
Antonie Van Leeuwenhoek. 2014 Jan;105(1):23-8
[PMID:
24122118]
Int J Syst Evol Microbiol. 2013 Mar;63(Pt 3):821-826
[PMID:
22611197]
Int J Syst Evol Microbiol. 2018 Apr;68(4):1300-1306
[PMID:
29485397]
Heliyon. 2021 Apr 25;7(4):e06867
[PMID:
33997399]
Can J Microbiol. 2010 Aug;56(8):657-66
[PMID:
20725128]
PLoS Med. 2009 Jul 21;6(7):e1000100
[PMID:
19621070]
J Basic Microbiol. 2012 Jun;52(3):248-60
[PMID:
21953403]
Microorganisms. 2024 Feb 06;12(2):
[PMID:
38399740]
Syst Appl Microbiol. 2014 Sep;37(6):457-65
[PMID:
24985194]
Microbiol Res. 2019 Apr;221:10-14
[PMID:
30825937]
Syst Appl Microbiol. 2022 Nov;45(6):126374
[PMID:
36335886]
Syst Appl Microbiol. 2011 Jun;34(4):267-75
[PMID:
21497473]
Int J Syst Evol Microbiol. 2014 Jan;64(Pt 1):83-87
[PMID:
24021729]
Antonie Van Leeuwenhoek. 2024 Mar 1;117(1):46
[PMID:
38427093]
J Basic Microbiol. 2015 Oct;55(10):1212-8
[PMID:
26214748]
Int J Microbiol. 2012;2012:693982
[PMID:
22518149]
Microbiol Res. 2018 Dec;217:51-59
[PMID:
30384908]
Chemosphere. 2016 Aug;156:312-325
[PMID:
27183333]
Int J Syst Evol Microbiol. 2020 Jul;70(7):4233-4244
[PMID:
32568030]
Arch Microbiol. 2017 Sep;199(7):1003-1009
[PMID:
28386665]
Saudi J Biol Sci. 2016 Jan;23(1):79-86
[PMID:
26858542]
Int J Syst Evol Microbiol. 2006 Apr;56(Pt 4):827-839
[PMID:
16585703]
FEMS Microbiol Ecol. 2021 Oct 20;97(11):
[PMID:
34610117]
World J Microbiol Biotechnol. 2013 Jun;29(6):1099-106
[PMID:
23397108]
Arch Microbiol. 2021 Sep;203(7):3839-3849
[PMID:
34003331]
Indian J Microbiol. 2022 Jun;62(2):242-248
[PMID:
35462714]
Arch Microbiol. 2021 Mar;203(2):513-521
[PMID:
32965526]
Antonie Van Leeuwenhoek. 2015 Apr;107(4):911-20
[PMID:
25603982]
Braz J Microbiol. 2018 Jul - Sep;49(3):513-521
[PMID:
29482998]
Curr Opin Plant Biol. 2015 Oct;27:52-8
[PMID:
26125499]
J Appl Microbiol. 2020 Nov;129(5):1133-1156
[PMID:
32592603]
Antonie Van Leeuwenhoek. 2018 Jul;111(7):1157-1163
[PMID:
29372423]
Syst Appl Microbiol. 2009 Feb;32(1):49-55
[PMID:
19054642]
Int J Syst Evol Microbiol. 2017 Jun;67(6):1906-1911
[PMID:
28629499]
Heliyon. 2021 Nov 05;7(11):e08321
[PMID:
34820538]
Int J Syst Evol Microbiol. 2011 Feb;61(Pt 2):299-309
[PMID:
20228207]
Appl Microbiol Biotechnol. 2013 Dec;97(23):10117-34
[PMID:
24196581]
Chemosphere. 2018 Apr;197:729-740
[PMID:
29407837]
Res Microbiol. 2016 Jul-Aug;167(6):510-20
[PMID:
27117242]
Life (Basel). 2020 Mar 12;10(3):
[PMID:
32178383]
Mol Phylogenet Evol. 2004 Mar;30(3):720-32
[PMID:
15012950]
Microbiol Res. 2019 Jan;218:76-86
[PMID:
30454661]
Front Microbiol. 2022 Oct 20;13:1005458
[PMID:
36338056]
Curr Microbiol. 2015 Sep;71(3):321-5
[PMID:
26063444]
World J Microbiol Biotechnol. 2014 Feb;30(2):719-25
[PMID:
24072498]
Front Plant Sci. 2023 Apr 11;14:1152875
[PMID:
37113600]
PLoS One. 2016 Aug 17;11(8):e0160688
[PMID:
27532545]
Arch Microbiol. 2020 Mar;202(2):399-409
[PMID:
31686120]
Microorganisms. 2022 May 23;10(5):
[PMID:
35630514]
Front Plant Sci. 2017 Jan 20;7:2064
[PMID:
28163711]
Int J Syst Evol Microbiol. 2018 Jan;68(1):248-253
[PMID:
29148367]
Microb Pathog. 2017 Oct;111:225-231
[PMID:
28867628]
Syst Appl Microbiol. 2020 Mar;43(2):126056
[PMID:
31987702]
Biology (Basel). 2023 Aug 24;12(9):
[PMID:
37759568]
Microorganisms. 2020 Mar 31;8(4):
[PMID:
32244524]
Microorganisms. 2017 Nov 25;5(4):
[PMID:
29186821]
FEMS Microbiol Ecol. 2011 Jun;76(3):463-75
[PMID:
21303396]
Environ Health Perspect. 2002 May;110(5):445-56
[PMID:
12003747]
Curr Res Microb Sci. 2023 Nov 19;5:100205
[PMID:
38077268]
Curr Microbiol. 2008 Feb;56(2):134-9
[PMID:
18074178]
Appl Environ Microbiol. 2021 Apr 27;87(10):
[PMID:
33674438]
World J Microbiol Biotechnol. 2023 Oct 16;39(12):343
[PMID:
37843647]
Mol Plant Microbe Interact. 2019 Jan;32(1):35-44
[PMID:
30252618]
Int J Mol Sci. 2017 Mar 26;18(4):
[PMID:
28346361]
Int J Syst Evol Microbiol. 2010 Feb;60(Pt 2):331-337
[PMID:
19651739]
J Appl Microbiol. 2023 Jan 23;134(1):
[PMID:
36626727]
Int J Syst Evol Microbiol. 2009 Jun;59(Pt 6):1487-91
[PMID:
19502340]
J Basic Microbiol. 2015 Jan;55(1):74-81
[PMID:
25590871]
Arch Microbiol. 2015 Aug;197(6):805-13
[PMID:
25967041]
PeerJ. 2020 Jun 26;8:e9423
[PMID:
32617194]
Int J Syst Evol Microbiol. 2019 Sep;69(9):2687-2695
[PMID:
31166161]
Int J Syst Evol Microbiol. 2003 Nov;53(Pt 6):1979-83
[PMID:
14657133]
Int J Syst Evol Microbiol. 2022 Mar;72(3):
[PMID:
35324421]
FEMS Microbiol Ecol. 2009 Jan;67(1):103-17
[PMID:
19120461]
FEMS Microbiol Ecol. 2015 Apr;91(4):
[PMID:
25873605]
World J Microbiol Biotechnol. 2023 Jul 17;39(9):253
[PMID:
37458814]
Microbiome. 2020 Sep 28;8(1):139
[PMID:
32988416]
Science. 2007 Jun 1;316(5829):1307-12
[PMID:
17540897]
Syst Appl Microbiol. 2012 Jun;35(4):263-9
[PMID:
22633818]
Microbiome. 2019 Apr 16;7(1):63
[PMID:
30992078]
Int J Syst Evol Microbiol. 2016 Apr;66(4):1838-1843
[PMID:
26843192]
J Plant Physiol. 2014 Jul 01;171(11):884-94
[PMID:
24913045]
Syst Appl Microbiol. 2014 Dec;37(8):605-12
[PMID:
25294010]
Microorganisms. 2022 Apr 24;10(5):
[PMID:
35630335]
Genes (Basel). 2018 Nov 08;9(11):
[PMID:
30413093]
Int J Syst Evol Microbiol. 2016 Sep;66(9):3509-3514
[PMID:
27282917]
Plants (Basel). 2022 Apr 17;11(8):
[PMID:
35448819]
Int J Syst Evol Microbiol. 2018 Jan;68(1):87-92
[PMID:
29095138]
Appl Microbiol Biotechnol. 2018 Jan;102(1):485-497
[PMID:
29110071]
Microbiol Mol Biol Rev. 2003 Dec;67(4):491-502
[PMID:
14665674]
Int J Syst Evol Microbiol. 2014 Sep;64(Pt 9):3028-3033
[PMID:
24928428]
Int J Syst Evol Microbiol. 2021 Dec;71(12):
[PMID:
34870578]
ISME J. 2010 Oct;4(10):1265-81
[PMID:
20445637]
J Adv Res. 2020 Apr 29;24:337-352
[PMID:
32461810]
Front Microbiol. 2019 Sep 18;10:1885
[PMID:
31620094]
Microb Ecol. 2006 Apr;51(3):375-93
[PMID:
16598639]
Int J Syst Evol Microbiol. 2013 May;63(Pt 5):1760-1765
[PMID:
23002052]
Arch Microbiol. 2012 Dec;194(12):1013-21
[PMID:
22892579]
Sci Total Environ. 2018 Dec 1;643:569-578
[PMID:
29945091]
Braz J Microbiol. 2021 Sep;52(3):1461-1474
[PMID:
34142357]
Sci Rep. 2014 Sep 17;4:6389
[PMID:
25227415]
World J Microbiol Biotechnol. 2015 Feb;31(2):415-33
[PMID:
25601371]
Arch Microbiol. 2015 Jun;197(5):683-92
[PMID:
25763990]
FEMS Microbiol Ecol. 2008 Mar;63(3):383-400
[PMID:
18194345]
Microbiol Res. 2020 Jan;231:126354
[PMID:
31678651]
Syst Appl Microbiol. 2016 Jun;39(4):237-242
[PMID:
27220477]
Science. 2009 May 8;324(5928):721-2; author reply 724-5
[PMID:
19423798]
Appl Environ Microbiol. 2022 Jan 25;88(2):e0164521
[PMID:
34757818]
Nature. 2001 Jun 21;411(6840):948-50
[PMID:
11418858]
Front Plant Sci. 2020 Jul 10;11:979
[PMID:
32765544]
Mol Ecol. 2017 Mar;26(6):1641-1651
[PMID:
28139080]
Syst Appl Microbiol. 2012 Mar;35(2):120-31
[PMID:
22265597]
Arch Microbiol. 2019 Dec;201(10):1333-1349
[PMID:
31309236]
Syst Appl Microbiol. 2011 Nov;34(7):524-30
[PMID:
21621936]
Can J Microbiol. 2000 Nov;46(11):1036-41
[PMID:
11109492]
Plant Soil. 2023;487(1-2):61-77
[PMID:
37333056]
FEMS Microbiol Lett. 2013 Nov;348(1):58-65
[PMID:
24033808]
Int J Mol Sci. 2021 Sep 03;22(17):
[PMID:
34502466]
Plants (Basel). 2021 May 07;10(5):
[PMID:
34067154]
Arch Microbiol. 2020 Jul;202(5):1049-1058
[PMID:
32008053]
Int J Syst Evol Microbiol. 2007 Dec;57(Pt 12):2799-2804
[PMID:
18048727]
Front Plant Sci. 2019 Nov 15;10:1489
[PMID:
31803218]