Giovanna Farruggia, Lorenzo Anconelli, Lucrezia Galassi, Manuela Voltattorni, Martina Rossi, Pietro Lodeserto, Paolo Blasi, Isabella Orienti
Acute promyelocytic leukemia (APL) is characterized by rearrangements of the retinoic acid receptor, RARα, which makes all-trans retinoic acid (ATRA) highly effective in the treatment of this disease, inducing promyelocytes differentiation. Current therapy, based on ATRA in combination with arsenic trioxide, with or without chemotherapy, provides high rates of event-free survival and overall survival. However, a decline in the drug activity, due to increased ATRA metabolism and RARα mutations, is often observed over long-term treatments. Furthermore, dedifferentiation can occur providing relapse of the disease. In this study we evaluated fenretinide, a semisynthetic ATRA derivative, encapsulated in nanomicelles (nano-fenretinide) as an alternative treatment to ATRA in APL. Nano-fenretinide was prepared by fenretinide encapsulation in a self-assembling phospholipid mixture. Physico-chemical characterization was carried out by dinamic light scattering and spectrophotometry. The biological activity was evaluated by MTT assay, flow cytometry and confocal laser-scanning fluorescence microscopy. Nano-fenretinide induced apoptosis in acute promyelocytic leukemia cells (HL60) by an early increase of reactive oxygen species and a mitochondrial potential decrease. The fenretinide concentration that induced 90-100% decrease in cell viability was about 2.0 µM at 24 h, a concentration easily achievable in vivo when nano-fenretinide is administered by oral or intravenous route, as demonstrated in previous studies. Nano-fenretinide was effective, albeit at slightly higher concentrations, also in doxorubicin-resistant HL60 cells, while a comparison with TK6 lymphoblasts indicated a lack of toxicity on normal cells. The results indicate that nano-fenretinide can be considered an alternative therapy to ATRA in acute promyelocytic leukemia when decreased efficacy, resistance or recurrence of disease emerge after protracted treatments with ATRA.
Pharmaceutics. 2022 Jun 07;14(6):
[PMID:
35745787]
Comp Biochem Physiol A Mol Integr Physiol. 2013 Aug;165(4):429-38
[PMID:
23396306]
Sci Rep. 2018 Jan 24;8(1):1531
[PMID:
29367754]
J Cancer. 2019 Nov 1;10(27):6767-6778
[PMID:
31839811]
J Immunol Methods. 1983 Dec 16;65(1-2):55-63
[PMID:
6606682]
Pharmaceutics. 2023 Feb 15;15(2):
[PMID:
36839972]
J Med Chem. 2023 Sep 14;66(17):12101-12114
[PMID:
37594965]
Drug Discov Today Technol. 2012 Summer;9(2):e71-e174
[PMID:
24064277]
Farmakol Toksikol. 1977 Jan-Feb;40(1):113-22
[PMID:
15857]
Br J Haematol. 2024 May;204(5):1732-1739
[PMID:
38198799]
Clin Cancer Res. 2008 Sep 1;14(17):5619-25
[PMID:
18765556]
Adv Drug Deliv Rev. 2013 Jan;65(1):71-9
[PMID:
23088862]
J Natl Cancer Inst. 2008 Apr 16;100(8):580-95
[PMID:
18398104]
Front Oncol. 2023 Apr 14;13:1135350
[PMID:
37124521]
J Biochem Biophys Methods. 2005 Dec 31;65(2-3):45-80
[PMID:
16297980]
Int J Mol Sci. 2022 Jul 04;23(13):
[PMID:
35806431]
Exp Biol Med (Maywood). 2017 Jun;242(11):1178-1184
[PMID:
28429653]
Cancer Res. 2013 Apr 15;73(8):2412-7
[PMID:
23423979]
Adv Drug Deliv Rev. 2011 Mar 18;63(3):136-51
[PMID:
20441782]
J Exp Clin Cancer Res. 2019 Aug 22;38(1):373
[PMID:
31439019]
Cell Death Dis. 2019 Jul 23;10(7):529
[PMID:
31332161]
Br J Cancer. 2009 Mar 24;100(6):865-9
[PMID:
19240721]
Leuk Lymphoma. 2004 May;45(5):979-85
[PMID:
15291358]
Cancer Res. 1984 Dec;44(12 Pt 1):5550-4
[PMID:
6594192]
Leuk Res. 2015 Oct;39(10):1071-8
[PMID:
26220867]
Blood. 2000 Apr 15;95(8):2672-82
[PMID:
10753850]
Cancer Res. 1986 Dec;46(12 Pt 1):6387-92
[PMID:
2946403]
Eur J Biochem. 1995 Mar 15;228(3):1020-9
[PMID:
7737146]
Blood Rev. 2023 Jan;57:101000
[PMID:
36041918]
Pharmaceuticals (Basel). 2023 Jan 24;16(2):
[PMID:
37259328]
Arch Pharm Res. 2024 Mar;47(3):249-271
[PMID:
38147202]
Br J Cancer. 1989 Jul;60(1):45-50
[PMID:
2803914]
Front Pediatr. 2019 Sep 06;7:368
[PMID:
31555628]
Arch Ophthalmol. 1998 Jun;116(6):759-63
[PMID:
9639444]
Int J Mol Sci. 2021 Nov 26;22(23):
[PMID:
34884632]
Antioxid Redox Signal. 2014 Apr 20;20(12):1866-80
[PMID:
24021153]
J Pharmacol Exp Ther. 2017 May;361(2):246-258
[PMID:
28275201]
Int J Mol Sci. 2022 Dec 29;24(1):
[PMID:
36614005]
Gene. 2015 Dec 15;574(2):193-203
[PMID:
26260013]
Nat Rev Clin Oncol. 2010 Nov;7(11):653-64
[PMID:
20838415]
Support Care Cancer. 2016 Jun;24(6):2497-501
[PMID:
26670917]
Int J Mol Sci. 2019 Jul 20;20(14):
[PMID:
31330838]
Hemasphere. 2023 May 23;7(6):e896
[PMID:
37234820]
Cancer Chemother Pharmacol. 2020 Aug;86(2):257-266
[PMID:
32696214]
Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5606-11
[PMID:
23513221]
Drug Des Devel Ther. 2019 Dec 19;13:4305-4319
[PMID:
31908416]
Cell Stem Cell. 2019 Aug 1;25(2):258-272.e9
[PMID:
31374198]
Nat Biotechnol. 2004 Aug;22(8):969-76
[PMID:
15258594]
Mediterr J Hematol Infect Dis. 2011;3(1):e2011048
[PMID:
22110898]
J Exp Med. 2013 Dec 16;210(13):2793-802
[PMID:
24344243]
Int J Nanomedicine. 2020 Sep 16;15:6873-6886
[PMID:
32982239]
Mol Cancer Ther. 2017 Oct;16(10):2047-2057
[PMID:
28619754]
J Biomed Opt. 2009 May-Jun;14(3):034030
[PMID:
19566323]
Drug Resist Updat. 2020 Mar;49:100670
[PMID:
31846838]
Oncotarget. 2020 Mar 17;11(11):992-1003
[PMID:
32215187]
Cancers (Basel). 2019 Dec 01;11(12):
[PMID:
31805753]
J Immunol Methods. 1984 May 25;70(2):257-68
[PMID:
6609997]