Lightweight and semi-transparent organic solar cells (ST-OSCs) offer bright promise for applications such as building integrated photovoltaics. Diluting donor content in bulk-heterojunction active layers to allow greater visible light transmittance (AVT) effectively enhances device transparency, yet the ineluctable compromise of the donor-phase continuity is challenging for efficient charge transport. Herein, a trace amount of n-type N-DMBI dopant is incorporated, which facilitates the donor:acceptor (D:A) de-mixing by strengthening both acceptor polarity and D/A crystallization. With the diminution of component inter-mixing, the limited number of donors increasingly self-aggregate to establish the more continuous phases. For the benchmark PM6:Y6-based ST-OSCs, when the donor content is reduced from regular 45 to optimal 30 wt.%, the device AVT is remarkably raised by more than a quarter, accompanied by a marginal drop in power conversion efficiency from 13.89% to 13.03%. This study reveals that by decreasing the donor content to <30 wt%, acceptor excitons induced by Förster resonance energy transfer are prone to severe radiative recombination. This is nonetheless mitigated by dopant inclusion within the acceptor phase by providing extra energy offset and prolonging charge transfer state lifetime to assist exciton dissociation.
Adv Mater. 2019 Apr;31(17):e1806921
[PMID:
30856291]
Adv Mater. 2020 Nov;32(47):e2005241
[PMID:
33089554]
J Chem Phys. 2017 Feb 7;146(5):054101
[PMID:
28178798]
Nat Commun. 2022 May 20;13(1):2827
[PMID:
35595764]
Angew Chem Int Ed Engl. 2021 Jul 5;60(28):15348-15353
[PMID:
33942945]
Adv Sci (Weinh). 2024 Aug;11(31):e2404135
[PMID:
38884284]
J Phys Chem Lett. 2021 May 27;12(20):5039-5044
[PMID:
34018757]
Adv Mater. 2020 Mar;32(9):e1906763
[PMID:
31975446]
J Am Chem Soc. 2021 May 26;143(20):7599-7603
[PMID:
33891817]
J Am Chem Soc. 2020 Jul 22;142(29):12751-12759
[PMID:
32602706]
Adv Mater. 2024 May;36(18):e2311305
[PMID:
38270280]
Adv Mater. 2024 Feb;36(7):e2309379
[PMID:
37901965]
Adv Mater. 2024 Apr;36(16):e2313237
[PMID:
38214364]
Nat Commun. 2017 Nov 23;8(1):1716
[PMID:
29170455]
Phys Chem Chem Phys. 2023 Apr 5;25(14):9807-9816
[PMID:
36960607]
Adv Mater. 2022 May;34(18):e2200337
[PMID:
35236013]
Nat Commun. 2023 Aug 21;14(1):5079
[PMID:
37604923]
Nat Commun. 2020 Nov 26;11(1):6005
[PMID:
33243982]
J Am Chem Soc. 2013 Jan 23;135(3):986-9
[PMID:
23286650]
J Am Chem Soc. 2010 Jul 7;132(26):8852-3
[PMID:
20552967]
Chem Soc Rev. 2023 Jul 3;52(13):4132-4148
[PMID:
37314457]
J Phys Chem Lett. 2019 Sep 5;10(17):4888-4894
[PMID:
31402673]
Nanoscale. 2017 Nov 9;9(43):17133-17142
[PMID:
29087426]
Small Methods. 2022 Apr;6(4):e2101570
[PMID:
35138038]
J Am Chem Soc. 2013 Aug 14;135(32):12057-67
[PMID:
23863101]
Angew Chem Int Ed Engl. 2022 May 2;61(19):e202116111
[PMID:
34962046]
ACS Appl Mater Interfaces. 2017 Jul 26;9(29):24771-24777
[PMID:
28675932]
Nat Commun. 2024 Feb 28;15(1):1830
[PMID:
38418862]
Adv Mater. 2024 Mar;36(9):e2305367
[PMID:
38100279]
J Phys Chem Lett. 2018 Sep 20;9(18):5496-5501
[PMID:
30187758]
Phys Chem Chem Phys. 2013 Jun 21;15(23):8972-82
[PMID:
23652780]