Neurocomputational Models of Interval Timing: Seeing the Forest for the Trees.

Fuat Balcı, Patrick Simen
Author Information
  1. Fuat Balcı: Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada. fuat.balci@umanitoba.ca.
  2. Patrick Simen: Department of Neuroscience, Oberlin College, Oberlin, OH, USA.

Abstract

Extracting temporal regularities and relations from experience/observation is critical for organisms' adaptiveness (communication, foraging, predation, prediction) in their ecological niches. Therefore, it is not surprising that the internal clock that enables the perception of seconds-to-minutes-long intervals (interval timing) is evolutionarily well-preserved across many species of animals. This comparative claim is primarily supported by the fact that the timing behavior of many vertebrates exhibits common statistical signatures (e.g., on-average accuracy, scalar variability, positive skew). These ubiquitous statistical features of timing behaviors serve as empirical benchmarks for modelers in their efforts to unravel the processing dynamics of the internal clock (namely answering how internal clock "ticks"). In this chapter, we introduce prominent (neuro)computational approaches to modeling interval timing at a level that can be understood by general audience. These models include Treisman's pacemaker accumulator model, the information processing variant of scalar expectancy theory, the striatal beat frequency model, behavioral expectancy theory, the learning to time model, the time-adaptive opponent Poisson drift-diffusion model, time cell models, and neural trajectory models. Crucially, we discuss these models within an overarching conceptual framework that categorizes different models as threshold vs. clock-adaptive models and as dedicated clock/ramping vs. emergent time/population code models.

Keywords

References

Abner, R. T., Edwards, T., Douglas, A., & Brunner, D. (2001). Pharmacology of temporal cognition in two mouse strains. International Journal of Comparative Psychology, 14(3–4), 189–210.
Addyman, C., French, R. M., & Thomas, E. (2016). Computational models of interval timing. Current Opinion in Behavioral Sciences, 8, 140–146. https://doi.org/10.1016/j.cobeha.2016.01.004 [DOI: 10.1016/j.cobeha.2016.01.004]
Ahmed, M. S., Priestley, J. B., Castro, A., Stefanini, F., Solis Canales, A. S., Balough, E. M., Lavoie, E., Mazzucato, L., Fusi, S., & Losonczy, A. (2020). Hippocampal network reorganization underlies the formation of a temporal association memory. Neuron, 107(2), 283. [DOI: 10.1016/j.neuron.2020.04.013]
Ahrens, M. B., & Sahani, M. (2008). Inferring elapsed time from stochastic neural processes. Advances in Neural Inform Processing, 20, 1–8.
Akbiyik, S., Göksun, T., & Balcı, F. (2022). Elucidating the common basis for task-dependent differential manifestations of category advantage: A decision theoretic approach. Cognitive science, 46(1), e13078. https://doi.org/10.1111/cogs.13078 [DOI: 10.1111/cogs.13078]
Akdogan, B., & Balci, F. (2016). Stimulus probability effects on temporal bisection performance of mice (Mus musculus). Animal Cognition, 19, 15–30. https://doi.org/10.1007/s10071-015-0909-6 [DOI: 10.1007/s10071-015-0909-6]
Akdoğan, B., & Balcı, F. (2017). Are you early or late?: Temporal error monitoring. Journal of Experimental Psychology: General, 146(3), 347–361. https://doi.org/10.1037/xge0000265 [DOI: 10.1037/xge0000265]
Akhlaghpour, H., Wiskerke, J., Choi, J. Y., Taliaferro, J. P., Au, J., & Witten, I. B. (2016). Dissociated sequential activity and stimulus encoding in the dorsomedial striatum during spatial working memory. eLife, 5, e19507. https://doi.org/10.7554/eLife.19507 [DOI: 10.7554/eLife.19507]
Augustine, S. (2008). The confessions (H. Chadwick, Trans.). Oxford University Press.
Balcı, F. (2014). Interval timing, dopamine, and motivation. Timing & Time Perception, 2(3), 379–410. https://doi.org/10.1163/22134468-00002035 [DOI: 10.1163/22134468-00002035]
Balcı, F. (2022). Tracing the shadow of time. Proceedings of the National Academy of Sciences of the United States of America, 119(10), e2201001119. https://doi.org/10.1073/pnas.2201001119 [DOI: 10.1073/pnas.2201001119]
Balcı, F., & Freestone, D. (2020). The Peak interval procedure in rodents: A tool for studying the neurobiological basis of interval timing and its alterations in models of human disease. Bio-protocol, 10(17), e3735. https://doi.org/10.21769/BioProtoc.3735
Balcı, F., & Simen, P. (2014). Decision processes in temporal discrimination. Acta psychologica, 149, 157–168. https://doi.org/10.1016/j.actpsy.2014.03.005 [DOI: 10.1016/j.actpsy.2014.03.005]
Balci, F., Gallistel, C. R., Allen, B. D., Frank, K. M., Gibson, J. M., & Brunner, D. (2009). Acquisition of peak responding: What is learned? Behavioural Processes, 80(1), 67–75. https://doi.org/10.1016/j.beproc.2008.09.010 [DOI: 10.1016/j.beproc.2008.09.010]
Balcı, F., Ünübol, H., Grondin, S. et al. (2023). Dynamics of retrospective timing: A big data approach. Psychon Bull Rev 30, 1840–1847. https://doi.org/10.3758/s13423-023-02277-3
Barnet, R. C., & Miller, R. R. (1996). Temporal encoding as a determinant of inhibitory control. Learning and Motivation, 27, 73–91. [DOI: 10.1006/lmot.1996.0005]
Bevins, R. A., & Ayres, J. J. B. (1995). One-trial context fear conditioning as a function of the interstimulus interval. Animal Learning & Behavior, 23(4), 400–410. https://doi.org/10.3758/BF03198940 [DOI: 10.3758/BF03198940]
Bi, Z., & Zhou, C. (2020). Understanding the computation of time using neural network models. Proceedings of the National Academy of Sciences of the United States of America, 117(19), 10530–10540. https://doi.org/10.1073/pnas.1921609117 [DOI: 10.1073/pnas.1921609117]
Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen, J. D. (2006). The physics of optimal decision making: A formal analysis of models of performance in two-alternative forced-choice tasks. Psychological review, 113(4), 700–765. https://doi.org/10.1037/0033-295X.113.4.700 [DOI: 10.1037/0033-295X.113.4.700]
Brown, S. D., & Heathcote, A. (2008). The simplest complete model of choice response time: Linear ballistic accumulation. Cognitive Psychology, 57(3), 153–178. [DOI: 10.1016/j.cogpsych.2007.12.002]
Buhusi, C. V., & Oprisan, S. A. (2013). Time-scale invariance as an emergent property in a perceptron with realistic, noisy neurons. Behavioural Processes, 95, 60–70. https://doi.org/10.1016/j.beproc.2013.02.015 [DOI: 10.1016/j.beproc.2013.02.015]
Buonomano, D. V. (2005). A learning rule for the emergence of stable dynamics and timing inrecurrent networks. Journal of Neurophysiology, 94(4), 2275–2283. [DOI: 10.1152/jn.01250.2004]
Buonomano, D. V., & Merzenich, M. M. (1995). Temporal information transformed into a spatial code by a neural network with realistic properties. Science (New York, N.Y.), 267(5200), 1028–1030. https://doi.org/10.1126/science.7863330 [DOI: 10.1126/science.7863330]
Çevik, M. O. (2003). Effects of methamphetamine on duration discrimination. Behavioral Neuroscience, 117(4), 774–784. [DOI: 10.1037/0735-7044.117.4.774]
Church, R. M., & Broadbent, H. A. (1990). Alternative representations of time, number, and rate. Cognition, 37, 55–81. [DOI: 10.1016/0010-0277(90)90018-F]
Church, R. M., & Deluty, M. Z. (1977). Bisection of temporal intervals. Journal of Experimental Psychology: Animal Behavior Processes, 3(3), 216–228. https://doi.org/10.1037/0097-7403.3.3.216 [DOI: 10.1037/0097-7403.3.3.216]
Creelman, C. D. (1962). Human discrimination of auditory duration. Journal of the Acoustical Society of America, 34(5), 582–593. https://doi.org/10.1121/1.1918172 [DOI: 10.1121/1.1918172]
De Corte, B. J. (2021). What are the neural mechanisms of “Higher-Order” timing? Complex behavior from low-level circuits. ProQuest Dissertations Publishing. https://doi.org/10.17077/etd.006279 [DOI: 10.17077/etd.006279]
De Corte, B. J., & Matell, M. S. (2016). Temporal averaging across multiple response options: Insight into the mechanisms underlying integration. Animal Cognition, 19, 329–342. https://doi.org/10.1007/s10071-015-0935-4 [DOI: 10.1007/s10071-015-0935-4]
De Corte, B. J., Akdoğan, B., & Balsam, P. D. (2022). Temporal scaling and computing time in neural circuits: Should we stop watching the clock and look for its gears? Frontiers in Behavioural Neuroscience, 16, 1022713. https://doi.org/10.3389/fnbeh.2022.1022713 [DOI: 10.3389/fnbeh.2022.1022713]
Delamater, A. R., & Nicolas, D.-M. (2015). Temporal averaging across stimuli signaling the same or different reinforcing outcomes in the peak procedure. International Journal Comparative Psychology, 28, uclapsych_ijcp_28552. [DOI: 10.46867/ijcp.2015.28.02.12]
Drew, M. R., Fairhurst, S., Malapani, C., Horvitz, J. C., & Balsam, P. D. (2003). Effects of dopamine antagonists on the timing of two intervals. Pharmacology, Biochemistry, and Behavior, 75(1), 9–15. https://doi.org/10.1016/s0091-3057(03)00036-4 [DOI: 10.1016/s0091-3057(03)00036-4]
Durstewitz, D. (2003). Self-organizing neural integrator predicts interval times through climbing activity. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 23(12), 5342–5353. https://doi.org/10.1523/JNEUROSCI.23-12-05342.2003 [DOI: 10.1523/JNEUROSCI.23-12-05342.2003]
Eichenbaum, H. (2014). Time cells in the hippocampus: A new dimension for mapping memories. Nature Reviews Neurosciemce, 15, 732–744. https://doi.org/10.1038/nrn3827 [DOI: 10.1038/nrn3827]
Emmons, E. B., De Corte, B. J., Kim, Y., Parker, K. L., Matell, M. S., & Narayanan, N. S. (2017). Rodent medial frontal control of temporal processing in the dorsomedial striatum. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 37(36), 8718–8733. https://doi.org/10.1523/JNEUROSCI.1376-17.2017 [DOI: 10.1523/JNEUROSCI.1376-17.2017]
Emmons, E. B., Kennedy, M., Kim, Y., & Narayanan, N. S. (2019). Corticostriatal stimulation compensates for medial frontal inactivation during interval timing. Scientific Reports, 9(1), 14371. https://doi.org/10.1038/s41598-019-50975-7 [DOI: 10.1038/s41598-019-50975-7]
Emmons, E., Tunes-Chiuffa, G., Choi, J., Bruce, R. A., Weber, M. A., Kim, Y., & Narayanan, N. S. (2020). Temporal learning among prefrontal and striatal ensembles. Cerebral Cortex Communications, 1(1), tgaa058. https://doi.org/10.1093/texcom/tgaa058 [DOI: 10.1093/texcom/tgaa058]
Farrell, S., & Lewandowsky, S. (2018). Computational modeling of cognition and behavior. Cambridge University Press. https://doi.org/10.1017/CBO9781316272503 [DOI: 10.1017/CBO9781316272503]
Ferster, C. B., & Skinner, B. F. (1957). Schedules of reinforcement. Appleton-Century-Crofts. https://doi.org/10.1037/10627-000 [DOI: 10.1037/10627-000]
Gallistel, C. R., & King, A. P. (2010). Memory and the computational brain: Why cognitive science will transform neuro-science. Wiley-Blackwell Publishing.
Gibbon, J. (1977). Scalar expectancy theory and Weber’s law in animal timing. Psychological Review, 84(3), 279–325. https://doi.org/10.1037/0033-295X.84.3.279 [DOI: 10.1037/0033-295X.84.3.279]
Gibbon, J., & Church, R. M. (1990). Representation of time. Cognition, 37(1–2), 23–54. https://doi.org/10.1016/0010-0277(90)90017-E [DOI: 10.1016/0010-0277(90)90017-E]
Gibbon, J., Church, R. M., & Meck, W. H. (1984). Scalar timing in memory. Annals of the New York Academy of Sciences, 423, 52–77. https://doi.org/10.1111/j.1749-6632.1984.tb23417.x [DOI: 10.1111/j.1749-6632.1984.tb23417.x]
Grice, G. R. (1968). Stimulus intensity and response evocation. Psychological Review, 75, 359–373. https://doi.org/10.1037/h0026287 [DOI: 10.1037/h0026287]
Gu, B.-M., van Rijn, H., & Meck, W. H. (2015). Oscillatory multiplexing of neural population codes for interval timing and working memory. Neuroscience and Biobehavioral Reviews, 48, 160–185. https://doi.org/10.1016/j.neubiorev.2014.10.008 [DOI: 10.1016/j.neubiorev.2014.10.008]
Hardy, N. F., & Buonomano, D. V. (2018). Encoding time in feedforward trajectories of a recurrent neural network model. Neural Computation, 30(2), 378–396. https://doi.org/10.1162/neco_a_01041 [DOI: 10.1162/neco_a_01041]
Hass, J., & Durstewitz, D. (2014). Neurocomputational models of time perception. Advances in Experimental Medicine and Biology, 829, 49–71. https://doi.org/10.1007/978-1-4939-1782-2_4 [DOI: 10.1007/978-1-4939-1782-2_4]
Hass, J., Blaschke, S., Rammsayer, T., & Herrmann, J. M. (2008). A neurocomputational model for optimal temporal processing. Journal of Computational Neuroscience, 25(3), 449–464. https://doi.org/10.1007/s10827-008-0088-4 [DOI: 10.1007/s10827-008-0088-4]
Howard, M. W., MacDonald, C. J., Tiganj, Z., Shankar, K. H., Du, Q., Hasselmo, M. E., & Eichenbaum, H. (2014). A unified mathematical framework for coding time, space, and sequences in the hippocampal region. The Journal of Neuroscience, 34(13), 4692–4707. https://doi.org/10.1523/JNEUROSCI.5808-12.2014 [DOI: 10.1523/JNEUROSCI.5808-12.2014]
Jazayeri, M., & Shadlen, M. N. (2015). A neural mechanism for sensing and reproducing a time interval. Current Biology, 25, 2599–2609. https://doi.org/10.1016/j.cub.2015.08.038 [DOI: 10.1016/j.cub.2015.08.038]
Kalueff, A. V., Stewart, A. M., Song, C., Berridge, K. C., Graybiel, A. M., & Fentress, J. C. (2016). Neurobiology of rodent self-grooming and its value for translational neuroscience. Nature Reviews Neuroscience, 17(1), 45–59. https://doi.org/10.1038/nrn.2015.8 [DOI: 10.1038/nrn.2015.8]
Karmarkar, U. R., & Buonomano, D. V. (2007). Timing in the absence of clocks: Encoding time in neural network states. Neuron, 53(3), 427–438. https://doi.org/10.1016/j.neuron.2007.01.006 [DOI: 10.1016/j.neuron.2007.01.006]
Killeen, P. R., & Fetterman, J. G. (1988). A behavioral theory of timing. Psychological Review, 95(2), 274–295. https://doi.org/10.1037/0033-295X.95.2.274 [DOI: 10.1037/0033-295X.95.2.274]
Kim, J., Ghim, J. W., Lee, J. H., & Jung, M. W. (2013). Neural correlates of interval timing in rodent prefrontal cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(34), 13834–13847. https://doi.org/10.1523/JNEUROSCI.1443-13.2013 [DOI: 10.1523/JNEUROSCI.1443-13.2013]
Komura, Y., Tamura, R., Uwano, T., Nishijo, H., Kaga, K., & Ono, T. (2001). Retrospective and prospective coding for predicted reward in the sensory thalamus. Nature, 412, 546–549. https://doi.org/10.1038/35087595 [DOI: 10.1038/35087595]
Kononowicz, T. W., & van Rijn, H. (2014). Decoupling interval timing and climbing neural activity: A dissociation between CNV and N1P2 amplitudes. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34(8), 2931–2939. https://doi.org/10.1523/JNEUROSCI.2523-13.2014 [DOI: 10.1523/JNEUROSCI.2523-13.2014]
Kraus, B. J., Robinson, R. J., 2nd, White, J. A., Eichenbaum, H., & Hasselmo, M. E. (2013). Hippocampal “time cells”: Time versus path integration. Neuron, 78, 1090–1101. https://doi.org/10.1016/j.neuron.2013.04.015 [DOI: 10.1016/j.neuron.2013.04.015]
Leon, M. I., & Shadlen, M. N. (2003). Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron, 38, 317–327. https://doi.org/10.1016/s0896-6273(03)00185-5 [DOI: 10.1016/s0896-6273(03)00185-5]
Link, S. W. (1992). The wave theory of difference and similarity. Psychology Press.
Luce, R. (1986). Response times: Their role in inferring elementary mental organization (Oxford Psychology Series) (Vol. 8). Clarendon (Oxford University Press). 562 pp.
Ludvig, E. A., Conover, K., & Shizgal, P. (2007). The effects of reinforcer magnitude on timing in rats. Journal of the Experimental Analysis of Behavior, 87(2), 201–218. https://doi.org/10.1901/jeab.2007.38-06 [DOI: 10.1901/jeab.2007.38-06]
Luzardo, A., Rivest, F., Alonso, E., & Ludvig, E. A. (2017). A drift–diffusion model of interval timing in the peak procedure. Journal of Mathematical Psychology, 77, 111–123. https://doi.org/10.1016/j.jmp.2016.10.002
Macar, F., & Vidal, F. (2003). The CNV peak: An index of decision making and temporal memory. Psychophysiology, 40(6), 950–954. https://doi.org/10.1111/1469-8986.00113 [DOI: 10.1111/1469-8986.00113]
MacDonald, C. J. (2014). Prospective and retrospective duration memory in the hippocampus: Is time in the foreground or background? Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 369(1637), 20120463. https://doi.org/10.1098/rstb.2012.0463 [DOI: 10.1098/rstb.2012.0463]
MacDonald, C. J., Lepage, K. Q., Eden, U. T., & Eichenbaum, H. (2011). Hippocampal “time cells” bridge the gap in memory for discontiguous events. Neuron, 71(4), 737–749. https://doi.org/10.1016/j.neuron.2011.07.012 [DOI: 10.1016/j.neuron.2011.07.012]
MacDonald, C. J., Carrow, S., Place, R., & Eichenbaum, H. (2013). Distinct hippocampal time cell sequences represent odor memories in immobilized rats. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(36), 14607–14616. https://doi.org/10.1523/JNEUROSCI.1537-13.2013 [DOI: 10.1523/JNEUROSCI.1537-13.2013]
Machado, A. (1997). Learning the temporal dynamics of behavior. Psychological Review, 104(2), 241–265. https://doi.org/10.1037/0033-295X.104.2.241 [DOI: 10.1037/0033-295X.104.2.241]
Machado, A., Malheiro, M. T., & Erlhagen, W. (2009). Learning to time: A perspective. Journal of the Experimental Analysis of Behavior, 92(3), 423–458. https://doi.org/10.1901/jeab.2009.92-423 [DOI: 10.1901/jeab.2009.92-423]
Manns, J. R., Howard, M. W., & Eichenbaum, H. (2007). Gradual changes in hippocampal activity support remembering the order of events. Neuron, 56(3), 530–540. https://doi.org/10.1016/j.neuron.2007.08.017 [DOI: 10.1016/j.neuron.2007.08.017]
Maricq, A. V., Roberts, S., & Church, R. M. (1981). Methamphetamine and time estimation. Journal of Experimental Psychology. Animal Behavior Processes, 7(1), 18–30. https://doi.org/10.1037/0097-7403.7.1.18 [DOI: 10.1037/0097-7403.7.1.18]
Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. W.H. Freeman.
Matell, M. S., & Meck, W. H. (2000). Neuropsychological mechanisms of interval timing behavior. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 22(1), 94–103. https://doi.org/10.1002/(SICI)1521-1878(200001)22:1<94::AID-BIES14>3.0.CO;2-E [DOI: 10.1002/(SICI)1521-1878(200001)22]
Matell, M. S., & Meck, W. H. (2004). Cortico-striatal circuits and interval timing: Coincidence detection of oscillatory processes. Cognitive Brain Research, 21, 139–170. https://doi.org/10.1016/j.cogbrainres.2004.06.012 [DOI: 10.1016/j.cogbrainres.2004.06.012]
Matell, M. S., Meck, W. H., & Nicolelis, M. A. (2003). Interval timing and the encoding of signal duration by ensembles of cortical and striatal neurons. Behavioral Neuroscience, 117(4), 760–773. https://doi.org/10.1037/0735-7044.117.4.760 [DOI: 10.1037/0735-7044.117.4.760]
Matell, M. S., Bateson, M., & Meck, W. H. (2006). Single-trials analyses demonstrate that increases in clock speed contribute to the methamphetamine-induced horizontal shifts in peak-interval timing functions. Psychopharmacology, 188(2), 201–212. https://doi.org/10.1007/s00213-006-0489-x [DOI: 10.1007/s00213-006-0489-x]
Meck, W. H. (1983). Selective adjustment of the speed of internal clock and memory processes. Journal of Experimental Psychology: Animal Behavior Processes, 9(2), 171–201. https://doi.org/10.1037/0097-7403.9.2.171 [DOI: 10.1037/0097-7403.9.2.171]
Meck, W. H. (1996). Neuropharmacology of timing and time perception. Brain Research. Cognitive Brain Research, 3(3–4), 227–242. https://doi.org/10.1016/0926-6410(96)00009-2 [DOI: 10.1016/0926-6410(96)00009-2]
Meck, W. H., & Church, R. M. (1987). Cholinergic modulation of the content of temporal memory. Behavioral Neuroscience, 101(4), 457–464. https://doi.org/10.1037/0735-7044.101.4.457 [DOI: 10.1037/0735-7044.101.4.457]
Meck W. H. (2006). Neuroanatomical localization of an internal clock: a functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain research, 1109(1), 93–107. https://doi.org/10.1016/j.brainres.2006.06.031
Meck, W. H., Penney, T. B., & Pouthas, V. (2008). Cortico-striatal representation of time in animals and humans. Current Opinion in Neurobiology, 18, 145–152. https://doi.org/10.1016/j.conb.2008.08.002 [DOI: 10.1016/j.conb.2008.08.002]
Mello, G. B. M., Soares, S., & Paton, J. J. (2015). A scalable population code for time in the striatum. Current Biology, 25(9), 1113–1122. [DOI: 10.1016/j.cub.2015.02.036]
Merchant, H., & Averbeck, B. B. (2017). The computational and neural basis of rhythmic timing in medial premotor cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 37(17), 4552–4564. https://doi.org/10.1523/JNEUROSCI.0367-17.2017 [DOI: 10.1523/JNEUROSCI.0367-17.2017]
Miall, C. (1989). The storage of time intervals using oscillating neurons. Neural Computation, 1, 359–371. https://doi.org/10.1162/neco.1989.1.3.359 [DOI: 10.1162/neco.1989.1.3.359]
Molet, M., Miguez, G., Cham, H. X., & Miller, R. R. (2012). When does integration of independently acquired temporal relationships take place? Journal of Experimental Psychology: Animal Behavior Processes, 38, 369–380. https://doi.org/10.1037/a0029379 [DOI: 10.1037/a0029379]
Murakami, M., Shteingart, H., Loewenstein, Y., & Mainen, Z. F. (2017). Distinct sources of deterministic and stochastic components of action timing decisions in rodent frontal cortex. Neuron, 94, e7908–e7919. https://doi.org/10.1016/j.neuron.2017.04.040 [DOI: 10.1016/j.neuron.2017.04.040]
O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford University Press.
Odum, A. L., & Ward, R. D. (2007). Characterizing the effects of d-amphetamine on temporal discrimination. Behavioural Processes, 75(2), 156–166. https://doi.org/10.1016/j.beproc.2007.02.022 [DOI: 10.1016/j.beproc.2007.02.022]
Ofir, N., & Landau, A. N. (2022). Neural signatures of evidence accumulation in temporal decisions. Current Biology: CB, 32(18), 4093–4100.e6. https://doi.org/10.1016/j.cub.2022.08.006 [DOI: 10.1016/j.cub.2022.08.006]
Okun, M., & Lampl, I. (2009). Balance of excitation and inhibition. Scholarpedia, 4(8), 7467., revision #150430. https://doi.org/10.4249/scholarpedia.7467 [DOI: 10.4249/scholarpedia.7467]
Oprisan, S. A., & Buhusi, C. V. (2011). Modeling pharmacological clock and memory patterns of interval timing in a striatal beat-frequency model with realistic, noisy neurons. Frontiers in Integrative Neuroscience, 5, 52. https://doi.org/10.3389/fnint.2011.00052 [DOI: 10.3389/fnint.2011.00052]
Oprisan, S. A., & Buhusi, C. V. (2013). Why noise is useful in functional and neural mechanisms of interval timing? BMC Neuroscience, 14, Article 84. https://doi.org/10.1186/1471-2202-14-84 [DOI: 10.1186/1471-2202-14-84]
Pastalkova, E., Itskov, V., Amarasingham, A., & Buzsáki, G. (2008). Internally generated cell assembly sequences in the rat hippocampus. Science (New York, N.Y.), 321(5894), 1322–1327. https://doi.org/10.1126/science.1159775 [DOI: 10.1126/science.1159775]
Pavlov, I. P. (1927). Conditioned reflexes. Oxford University Press.
Pérez, O., & Merchant, H. (2018). The synaptic properties of cells define the hallmarks of interval timing in a recurrent neural network. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 38(17), 4186–4199. https://doi.org/10.1523/JNEUROSCI.2651-17.2018 [DOI: 10.1523/JNEUROSCI.2651-17.2018]
Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59–108. https://doi.org/10.1037/0033-295X.85.2.59 [DOI: 10.1037/0033-295X.85.2.59]
Ratcliff, R. (2014). Measuring psychometric functions with the diffusion model. Journal of Experimental Psychology: Human Perception and Performance, 40(2), 870–888. https://doi.org/10.1037/a0034954 [DOI: 10.1037/a0034954]
Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural Computation, 20(4), 873–922. https://doi.org/10.1162/neco.2008.12-06-420 [DOI: 10.1162/neco.2008.12-06-420]
Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion decision model: Current issues and history. Trends in Cognitive Sciences, 20(4), 260–281. https://doi.org/10.1016/j.tics.2016.01.007 [DOI: 10.1016/j.tics.2016.01.007]
Rivest, F., & Bengio, Y. (2011). Adaptive drift-diffusion process to learn time intervals. Cornell University Library, arXiv, 1103.2382v1. https://doi.org/10.48550/arXiv.1103.2382
Roberts, S. (1981). Isolation of an internal clock. Journal of Experimental Psychology: Animal Behavior Processes, 7(3), 242–268. https://doi.org/10.1037/0097-7403.7.3.242 [DOI: 10.1037/0097-7403.7.3.242]
Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408. https://doi.org/10.1037/h0042519 [DOI: 10.1037/h0042519]
Salz, D. M., Tiganj, Z., Khasnabish, S., Kohley, A., Sheehan, D., Howard, M. W., & Eichenbaum, H. (2016). Time cells in hippocampal area CA3. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 36(28), 7476–7484. https://doi.org/10.1523/JNEUROSCI.0087-16.2016 [DOI: 10.1523/JNEUROSCI.0087-16.2016]
Shankar, K. H., & Howard, M. W. (2010). Timing using temporal context. Brain Research, 1365, 3–17. https://doi.org/10.1016/j.brainres.2010.07.045 [DOI: 10.1016/j.brainres.2010.07.045]
Simen, P., Balci, F., de Souza, L., Cohen, J. D., & Holmes, P. (2011a). A model of interval timing by neural integration. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31(25), 9238–9253. https://doi.org/10.1523/JNEUROSCI.3121-10.2011 [DOI: 10.1523/JNEUROSCI.3121-10.2011]
Simen, P., Balci, F., deSouza, L., Cohen, J. D., & Holmes, P. (2011b). Interval timing by long-range temporal integration. Frontiers in Integrative Neuroscience, 5, Article 28. https://doi.org/10.3389/fnint.2011.00028 [DOI: 10.3389/fnint.2011.00028]
Simen, P., Rivest, F., Ludvig, E. A., Balci, F., & Killeen, P. (2013). Timescale invariance in the pacemaker-accumulator family of timing models. Timing & Time Perception, 1, 159–188. https://doi.org/10.1163/22134468-00002018 [DOI: 10.1163/22134468-00002018]
Simen, P., Vlasov, K., & Papadakis, S. (2016). Scale (in)variance in a unified diffusion model of decision making and timing. Psychological Review, 123(2), 151–181. https://doi.org/10.1037/rev0000014 [DOI: 10.1037/rev0000014]
Staddon, J. E., & Higa, J. J. (1996). Multiple time scales in simple habituation. Psychological Review, 103(4), 720–733. https://doi.org/10.1037/0033-295x.103.4.720 [DOI: 10.1037/0033-295x.103.4.720]
Staddon, J. E., & Higa, J. J. (1999). Time and memory: Towards a pacemaker-free theory of interval timing. Journal of the Experimental Analysis of Behavior, 71(2), 215–251. https://doi.org/10.1901/jeab.1999.71-215 [DOI: 10.1901/jeab.1999.71-215]
Sundarapandian, V. (2009). 7. Queueing theory. Probability, Statistics and Queueing Theory. PHI Learning. ISBN 978-8120338449.
Swanton, D. N., Gooch, C. M., & Matell, M. S. (2009). Averaging of temporal memories by rats. Journal of Experimental Psychology: Animal Behavior Processes, 35, 434–439. https://doi.org/10.1037/a0014021 [DOI: 10.1037/a0014021]
Tiganj, Z., Hasselmo, M. E., & Howard, M. W. (2015). A simple biophysically plausible model for long time constants in single neurons. Hippocampus, 25(1), 27–37. https://doi.org/10.1002/hipo.22347 [DOI: 10.1002/hipo.22347]
Tiganj, Z., Jung, M. W., Kim, J., & Howard, M. W. (2017). Sequential firing codes for time in rodent medial prefrontal cortex. Cerebral cortex (New York, N.Y. : 1991), 27(12), 5663–5671. https://doi.org/10.1093/cercor/bhw336 [DOI: 10.1093/cercor/bhw336]
Treisman, M. (1963). Temporal discrimination and the indifference interval: Implications for a model of the “internal clock”. Psychological Monographs: General and Applied, 77(13), 1–31. https://doi.org/10.1037/h0093864 [DOI: 10.1037/h0093864]
Wald, A. (1947). Sequential analysis. Wiley.
Wald, A., & Wolfowitz, J. (1940). On a test whether two samples are from the same population. The Annals of Mathematical Statistics, 11(2), 147–162. https://doi.org/10.1214/aoms/1177731909 [DOI: 10.1214/aoms/1177731909]
Wiener, M., Parikh, A., Krakow, A., et al. (2018). an intrinsic role of beta oscillations in memory for time estimation. Scientific Reports, 8, 7992. https://doi.org/10.1038/s41598-018-26385-6 [DOI: 10.1038/s41598-018-26385-6]
Zeki, M., & Balcı, F. (2019). A simplified model of communication between time cells: Accounting for the linearly increasing timing imprecision. Frontiers in Computational Neuroscience, 12, 111. https://doi.org/10.3389/fncom.2018.00111 [DOI: 10.3389/fncom.2018.00111]
Zeki, M., & Balcı, F. (2023). Modeling time cell neuron-level dynamics. Computational Brain & Behavior. https://doi.org/10.1007/s42113-023-00183-4

MeSH Term

Animals
Time Perception
Models, Neurological
Humans
Biological Clocks
Computer Simulation
Neurons

Word Cloud

Similar Articles

Cited By