Andrés M Treviño-Alvarez, Tomás Cabeza de Baca, Emma J Stinson, Marci E Gluck, Paolo Piaggi, Susanne B Votruba, Jonathan Krakoff, Douglas C Chang
National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Food and Nutrition Board; Roundtable on Obesity Solutions. Callahan EA, ed. Global trends in obesity. In: Current Status and Response to the Global Obesity Pandemic: Proceedings of a Workshop. National Academies Press (US); 2019.
Lauby‐Secretan B, Scoccianti C, Loomis D, et al. Body fatness and cancer — viewpoint of the IARC working group. N Engl J Med. 2016;375(8):794‐798.
Lambert DC, Abramowitz MK. Obesity and the risk of low bicarbonate: a cohort study. Kidney Med. 2021;3(4):498‐506.e1.
Lambert DC, Kane J, Slaton A, Abramowitz MK. Associations of metabolic syndrome and abdominal obesity with anion gap metabolic acidosis among US adults. Kidney360. 2022;3(11):1842‐1851.
Farwell WR, Taylor EN. Serum bicarbonate, anion gap and insulin resistance in the National Health and Nutrition Examination Survey. Diabet Med. 2008;25(7):798‐804.
Taylor EN, Forman JP, Farwell WR. Serum anion gap and blood pressure in the National Health and Nutrition Examination Survey. Hypertension. 2007;50(2):320‐324.
Abramowitz MK, Hostetter TH, Melamed ML. The serum anion gap is altered in early kidney disease and associates with mortality. Kidney Int. 2012;82(6):701‐709.
Vormann J, Goedecke T. Acid‐base homeostasis: latent acidosis as a cause of chronic diseases. Swiss Journal of Integrative Medicine. 2006;18(5):255‐266.
DiNicolantonio JJ, O'Keefe JH. Low‐grade metabolic acidosis as a driver of insulin resistance. Open Heart. 2021;8(2):e001788.
Ho JQ, Abramowitz MK. Clinical consequences of metabolic acidosis—muscle. Adv Chronic Kidney Dis. 2022;29(4):395‐405.
DiNicolantonio JJ, O'Keefe J. Low‐grade metabolic acidosis as a driver of chronic disease: a 21st century public health crisis. Open Heart. 2021;8(2):e001730.
Simpson DP. Control of hydrogen ion homeostasis and renal acidosis. Medicine (Baltimore). 1971;50(6):503‐541.
Kopp W. How Western diet and lifestyle drive the pandemic of obesity and civilization diseases. Diabetes Metab Syndr Obes. 2019;12:2221‐2236.
Passey C. Reducing the dietary acid load: how a more alkaline diet benefits patients with chronic kidney disease. J Ren Nutr. 2017;27(3):151‐160.
Suleymanlar G, Zhou HZ, McCormack M, et al. Mechanism of impaired energy metabolism during acidosis: role of oxidative metabolism. Am J Physiol. 1992;262(6 Pt 2):H1818‐H1822.
Khacho M, Tarabay M, Patten D, et al. Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival. Nat Commun. 2014;5(1):3550.
Lambert DC, Abramowitz MK. Obesity, anion accumulation, and anion gap metabolic acidosis: a cohort study. Kidney360. 2021;2(11):1706‐1715.
Ferraro R, Boyce VL, Swinburn B, de Gregorio M, Ravussin E. Energy cost of physical activity on a metabolic ward in relationship to obesity. Am J Clin Nutr. 1991;53(6):1368‐1371.
Genuth S, Alberti KG, Bennett P, et al. Follow‐up report on the diagnosis of diabetes mellitus. Diabetes Care. 2003;26(11):3160‐3167.
Venti CA, Votruba SB, Franks PW, Krakoff J, Salbe AD. Reproducibility of ad libitum energy intake with the use of a computerized vending machine system. Am J Clin Nutr. 2010;91(2):343‐348.
Reinhardt M, Piaggi P, DeMers B, Trinidad C, Krakoff J. Cross calibration of two dual‐energy X‐ray densitometers and comparison of visceral adipose tissue measurements by iDXA and MRI. Obesity (Silver Spring). 2017;25(2):332‐337.
Roberts WC. The Friedewald‐levy‐Fredrickson formula for calculating low‐density lipoprotein cholesterol, the basis for lipid‐lowering therapy. Am J Cardiol. 1988;62(4):345‐346.
Figge J, Jabor A, Kazda A, Fencl V. Anion gap and hypoalbuminemia. Crit Care Med. 1998;26(11):1807‐1810.
Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604‐612.
Ravussin E, Lillioja S, Anderson TE, Christin L, Bogardus C. Determinants of 24‐hour energy expenditure in man. Methods and results using a respiratory chamber. J Clin Invest. 1986;78(6):1568‐1578.
Abbott WG, Howard BV, Christin L, et al. Short‐term energy balance: relationship with protein, carbohydrate, and fat balances. Am J Physiol. 1988;255(3 Pt 1):E332‐E337.
Lusk G. Animal Calorimetry twenty‐fourth paper. analysis of the oxidation of mixtures of carbohydrate and fat. J Biol Chem. 1924;59:41‐42.
Johansson G, Westerterp KR. Assessment of the physical activity level with two questions: validation with doubly labeled water. Int J Obes (Lond). 2008;32(6):1031‐1033.
Weyer C, Bogardus C, Pratley RE. Metabolic factors contributing to increased resting metabolic rate and decreased insulin‐induced thermogenesis during the development of type 2 diabetes. Diabetes. 1999;48(8):1607‐1614.
Baron RM, Kenny DA. The moderator–mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol. 1986;51(6):1173‐1182.
Lin Y, Bai M, Wang S, et al. Lactate is a key mediator that links obesity to insulin resistance via modulating cytokine production from adipose tissue. Diabetes. 2022;71(4):637‐652.
Abramowitz MK, Hostetter TH, Melamed ML. Lower serum bicarbonate and a higher anion gap are associated with lower cardiorespiratory fitness in young adults. Kidney Int. 2012;81(10):1033‐1042.
Williams RS, Heilbronn LK, Chen DL, Coster ACF, Greenfield JR, Samocha‐Bonet D. Dietary acid load, metabolic acidosis and insulin resistance – lessons from cross‐sectional and overfeeding studies in humans. Clin Nutr. 2016;35(5):1084‐1090.
Amodu A, Abramowitz MK. Dietary acid, age, and serum bicarbonate levels among adults in the United States. Clin J Am Soc Nephrol. 2013;8(12):2034‐2042.
Akter S, Eguchi M, Kuwahara K, et al. High dietary acid load is associated with insulin resistance: the Furukawa nutrition and health study. Clin Nutr. 2016;35(2):453‐459.
Fagherazzi G, Vilier A, Bonnet F, et al. Dietary acid load and risk of type 2 diabetes: the E3N‐EPIC cohort study. Diabetologia. 2014;57(2):313‐320.
Wang Z, Ying Z, Bosy‐Westphal A, et al. Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. Am J Clin Nutr. 2010;92(6):1369‐1377.
Jubrias SA, Crowther GJ, Shankland EG, Gronka RK, Conley KE. Acidosis inhibits oxidative phosphorylation in contracting human skeletal muscle in vivo. J Physiol. 2003;553(2):589‐599.
Walter G, Vandenborne K, McCully KK, Leigh JS. Noninvasive measurement of phosphocreatine recovery kinetics in single human muscles. Am J Physiol. 1997;272(2Pt 1):C525‐C534.
Lam YY, Redman LM, Smith SR, et al. Determinants of sedentary 24‐h energy expenditure: equations for energy prescription and adjustment in a respiratory chamber. Am J Clin Nutr. 2014;99(4):834‐842.
Piaggi P, Thearle MS, Krakoff J, Votruba SB. Higher daily energy expenditure and respiratory quotient, rather than fat‐free mass, independently determine greater ad libitum overeating. J Clin Endocrinol Metab. 2015;100(8):3011‐3020.
Piaggi P, Basolo A, Martin CK, Redman LM, Votruba SB, Krakoff J. The counterbalancing effects of energy expenditure on body weight regulation: Orexigenic versus energy‐consuming mechanisms. Obesity (Silver Spring). 2022;30(3):639‐644.
Basolo A, Votruba SB, Heinitz S, Krakoff J, Piaggi P. Deviations in energy sensing predict long‐term weight change in overweight native Americans. Metabolism. 2018;82:65‐71.
Kirkpatrick SI, Troiano RP, Barrett B, et al. Measurement error affecting web‐ and paper‐based dietary assessment instruments: insights from the multi‐cohort eating and activity study for understanding reporting error. Am J Epidemiol. 2022;191(6):1125‐1139.