ZnO nanoparticles encapsulated cellulose-lignin film for antibacterial and biodegradable food packaging.

Xinyi Zhu, Henghui Li, Ling Cai, Yixian Wu, Jun Wang, Shangcheng Xu, Shoulin Wang, Hao Wang, Daorong Wang, Jin Chen
Author Information
  1. Xinyi Zhu: The Affiliated Chongqing Prevention and Treatment Center for Occupational Diseases, School of Public Health, Nanjing Medical University, Chongqing 400060, China.
  2. Henghui Li: The Affiliated Chongqing Prevention and Treatment Center for Occupational Diseases, School of Public Health, Nanjing Medical University, Chongqing 400060, China.
  3. Ling Cai: The Affiliated Chongqing Prevention and Treatment Center for Occupational Diseases, School of Public Health, Nanjing Medical University, Chongqing 400060, China.
  4. Yixian Wu: Department of Health Promotion Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
  5. Jun Wang: The Affiliated Chongqing Prevention and Treatment Center for Occupational Diseases, School of Public Health, Nanjing Medical University, Chongqing 400060, China.
  6. Shangcheng Xu: The Affiliated Chongqing Prevention and Treatment Center for Occupational Diseases, School of Public Health, Nanjing Medical University, Chongqing 400060, China.
  7. Shoulin Wang: The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
  8. Hao Wang: Northern Jiangsu People's Hospital Affiliated to Nanjing Medical University, Yangzhou 225001, China.
  9. Daorong Wang: Northern Jiangsu People's Hospital Affiliated to Nanjing Medical University, Yangzhou 225001, China.
  10. Jin Chen: The Affiliated Chongqing Prevention and Treatment Center for Occupational Diseases, School of Public Health, Nanjing Medical University, Chongqing 400060, China.

Abstract

Foodborne illness caused by consuming foods contaminated by pathogens remains threating to the public health. Despite considerable efforts of using renewable source materials, it is highly demanding to fabricate food packaging with multiple properties including eco-friendliness, bactericidal effect and biocompatibility. Here, sodium lignosulfonate (SL) and ZnO nanoparticles (ZnO NPs) were used as functional filler and structure components, respectively, on the cellulose nanofibers (CNFs)-based films, which endows the produced membrane (CNF/SL-ZnO) the UV-light blocking, antioxidant, and antimicrobial characteristics. Due to the interconnected polymeric structure, the prepared CNF/SL-ZnO films possessed considerable mechanical properties, thermal stability, and good moisture barrier capability. Moreover, the tested samples exhibited an improved shelf life in food packaging. Furthermore, metagenome analysis revealed superior biodegradability of obtained films with negligible side effect on the soil microenvironment. Therefore, the biocompatible, degradable, and antibacterial CNF/SL-ZnO film holds enormous potential for sustainable uses including food packaging.

Keywords

References

Colloids Surf B Biointerfaces. 2022 Aug;216:112536 [PMID: 35567806]
Carbohydr Polym. 2021 Nov 15;274:118651 [PMID: 34702470]
Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8 [PMID: 18838391]
Biotechnol Adv. 2021 Jul-Aug;49:107748 [PMID: 33823269]
Crit Rev Food Sci Nutr. 2020;60(3):435-460 [PMID: 31131614]
Carbohydr Polym. 2021 Nov 1;271:118447 [PMID: 34364582]
Life Sci. 2023 Jan 1;312:121250 [PMID: 36455650]
Crit Rev Biotechnol. 2017 Aug;37(5):626-640 [PMID: 27439855]
Plant Biotechnol J. 2017 May;15(5):581-593 [PMID: 27775869]
Int J Biol Macromol. 2021 Jul 31;183:1371-1378 [PMID: 34019919]
Burns Trauma. 2019 Jan 25;7:2 [PMID: 30701184]
Nucleic Acids Res. 2023 Jan 6;51(D1):D690-D699 [PMID: 36263822]
Small. 2021 May;17(18):e2008011 [PMID: 33759326]
Int J Biol Macromol. 2020 Feb 15;145:92-99 [PMID: 31870868]
Nature. 2015 Sep 10;525(7568):201-5 [PMID: 26331545]
Appl Environ Microbiol. 2011 Apr;77(7):2325-31 [PMID: 21296935]
Int J Biol Macromol. 2020 Feb 15;145:28-41 [PMID: 31874274]
Nat Commun. 2018 Jun 5;9(1):2157 [PMID: 29872038]
Food Chem. 2020 Dec 1;332:127375 [PMID: 32622189]
FEMS Microbiol Ecol. 2021 Mar 10;97(3): [PMID: 33547899]
Food Chem X. 2022 Apr 02;14:100300 [PMID: 35434601]
Sci Total Environ. 2020 Dec 10;747:141358 [PMID: 32771793]
Compr Rev Food Sci Food Saf. 2021 Sep;20(5):4881-4905 [PMID: 34355490]
Appl Environ Microbiol. 2016 Aug 15;82(17):5259-68 [PMID: 27316960]
Carbohydr Polym. 2021 Mar 15;256:117429 [PMID: 33483018]
Chemosphere. 2020 Jul;251:126432 [PMID: 32169709]
Metab Eng. 2022 May;71:13-41 [PMID: 34864214]
Carbohydr Polym. 2022 Apr 1;281:119083 [PMID: 35074132]
Appl Microbiol Biotechnol. 2019 Feb;103(3):1179-1188 [PMID: 30594952]
Eco Environ Health. 2022 Jun 22;1(2):86-104 [PMID: 38075525]
Food Res Int. 2020 Nov;137:109625 [PMID: 33233213]
Drug Discov Today. 2017 Dec;22(12):1825-1834 [PMID: 28847758]
Mil Med Res. 2020 Nov 10;7(1):54 [PMID: 33172503]
Int J Biol Macromol. 2021 Sep 1;186:770-779 [PMID: 34284052]
Carbohydr Polym. 2021 Mar 15;256:117510 [PMID: 33483031]
Adv Colloid Interface Sci. 2022 Dec;310:102806 [PMID: 36343492]
Food Chem. 2022 Jan 30;368:130784 [PMID: 34411864]
Nat Prod Rep. 2010 May;27(5):742-56 [PMID: 20372697]
Int J Biol Macromol. 2021 Jul 1;182:1554-1581 [PMID: 34029581]
Carbohydr Polym. 2022 Nov 15;296:119972 [PMID: 36088011]
Food Chem. 2021 Jul 1;349:129208 [PMID: 33578247]
Proc Natl Acad Sci U S A. 2007 Sep 4;104(36):14401-5 [PMID: 17728401]
Food Chem. 2020 Apr 25;310:125915 [PMID: 31841936]
Science. 2020 Sep 18;369(6510):1515-1518 [PMID: 32943526]
Int J Biol Macromol. 2020 Apr 1;148:666-676 [PMID: 31978467]
Trends Food Sci Technol. 2021 Oct;116:1195-1199 [PMID: 34092920]
J Hazard Mater. 2022 May 15;430:128436 [PMID: 35158241]
J Hazard Mater. 2022 Jan 15;422:126885 [PMID: 34418830]

Word Cloud

Similar Articles

Cited By