Three-dimensional (3D) cell culture creates a more physiologically relevant environment for enhanced drug screening capabilities using microcarriers. An automated 3D system that integrates robotic manipulators, liquid handling systems, sensors, and environment control systems has the capacity to handle multiple samples in parallel, perform repetitive tasks, and provide real-time monitoring and analysis. This chapter describes a potential 3D cell culture drug screening model by combining renal proximal tubule cells as a representative normal cell line with cancer cell lines. This combination is subjected to drug screening to evaluate the drug's efficacy in suppressing cancer cells while minimizing impact on normal cells with the added benefit of having the ability to separate the two cell types by magnetic isolation for high content screens including mass spectrometry-based proteomics. This study presents advancements in 3D cell culture techniques, emphasizing the importance of automation and the potential of microcarriers in drug screening and disease modeling.
Levenberg S, Burdick JA, Kraehenbuehl T et al (2005) Neurotrophin-induced differentiation of human embryonic stem cells on three-dimensional polymeric scaffolds. Tissue Eng 11(3–4):506–512. https://doi.org/10.1089/ten.2005.11.506
[DOI:
10.1089/ten.2005.11.506]
Pampaloni F, Reynaud EG, Stelzer EH (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8(10):839–845. https://doi.org/10.1038/nrm2236
[DOI:
10.1038/nrm2236]
Achilli TM, Meyer J, Morgan JR (2012) Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin Biol Ther 12(10):1347–1360. https://doi.org/10.1517/14712598.2012.707181
[DOI:
10.1517/14712598.2012.707181]
Kaczmarczyk JA, Roberts RR, Luke BT et al (2021) Comparative microsomal proteomics of a model lung cancer cell line NCI-H23 reveals distinct differences between molecular profiles of 3D and 2D cultured cells. Oncotarget 12(20):2022–2038
[DOI:
10.18632/oncotarget.28072]
YekrangSafakar A, Acun A, Choi JW et al (2018) Hollow microcarriers for large-scale expansion of anchorage-dependent cells in a stirred bioreactor. Biotechnol Bioeng 115(7):1717–1728. https://doi.org/10.1002/bit.26601
[DOI:
10.1002/bit.26601]
Chen AK, Reuveny S, Oh SK (2013) Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: achievements and future direction. Biotechnol Adv 31(7):1032–1046. https://doi.org/10.1016/j.biotechadv.2013.03.006
[DOI:
10.1016/j.biotechadv.2013.03.006]
Duan B, Zheng X, Xia Z et al (2015) Highly biocompatible nanofibrous microspheres self-assembled from chitin in NaOH/urea aqueous solution as cell carriers. Angew Chem Int Ed Eng 54(17):5152–5156. https://doi.org/10.1002/anie.201412129
[DOI:
10.1002/anie.201412129]
Spearman M, Rodriguez J, Huzel N et al (2005) Production and glycosylation of recombinant beta-interferon in suspension and Cytopore microcarrier cultures of CHO cells. Biotechnol Prog 21:31–39
[DOI:
10.1021/bp0498084]
Li B, Wang X, Wang Y et al (2015) Past, present, and future of microcarrier-based tissue engineering. J Orthop Transl 3:51–57
Tan KY, Teo KL, Lim JF et al (2015) Serum-free media formulations are cell line-specific and require optimization for microcarrier culture. Cytotherapy 17(8):1152–1165. https://doi.org/10.1016/j.jcyt.2015.05.001
[DOI:
10.1016/j.jcyt.2015.05.001]
Guillou L, Babataheri A, Puech PH et al (2016) Dynamic monitoring of cell mechanical properties using profile microindentation. Sci Rep 6:21529. https://doi.org/10.1038/srep21529
[DOI:
10.1038/srep21529]
Gildea JJ, McGrath HE, Van Sciver RE et al (2013) Isolation, growth, and characterization of human renal epithelial cells using traditional and 3D methods. Methods Mol Biol 945:329–345. https://doi.org/10.1007/978-1-62703-125-7_20
[DOI:
10.1007/978-1-62703-125-7_20]
Alasfar RH, Ahzi S, Barth N et al (2022) A review on the modeling of the elastic modulus and yield stress of polymers and polymer nanocomposites: effect of temperature, loading rate and porosity. Polymers (Basel) 14(3):360. https://doi.org/10.3390/polym14030360
[DOI:
10.3390/polym14030360]
Catoira MC, Fusaro L, Di Francesco D et al (2019) Overview of natural hydrogels for regenerative medicine applications. J Mater Sci Mater Med 30(10):115. https://doi.org/10.1007/s10856-019-6318-7
[DOI:
10.1007/s10856-019-6318-7]
McLaren D, Gorba T, Marguerie de Rotrou A et al (2013) Automated large-scale culture and medium-throughput chemical screen for modulators of proliferation and viability of human induced pluripotent stem cell-derived neuroepithelial-like stem cells. J Biomol Screen 18(3):258–268. https://doi.org/10.1177/1087057112461446
[DOI:
10.1177/1087057112461446]
Tristan CA, Ormanoglu P, Slamecka J et al (2021) Robotic high-throughput biomanufacturing and functional differentiation of human pluripotent stem cells. Stem Cell Rep 16(12):3076–3092. https://doi.org/10.1016/j.stemcr.2021.11.004
[DOI:
10.1016/j.stemcr.2021.11.004]
BioLevitator cell culture handbook (2018) from https://www.dia-m.ru/upload/iblock/f37/497-hamilton.pdf
Bharadwaj R, Yu H (2004) The spindle checkpoint, aneuploidy, and cancer. Oncogene 23:2016–2027
[DOI:
10.1038/sj.onc.1207374]
Brito DA, Yang Z, Rieder CL (2008) Microtubules do not promote mitotic slippage when the spindle assembly checkpoint cannot be satisfied. J Cell Biol 182:623–629
[DOI:
10.1083/jcb.200805072]
Ganguly A, Yang H, Cabral F (2010) Paclitaxel-dependent cell lines reveal a novel drug activity. Mol Cancer Ther 9:2914–2923
[DOI:
10.1158/1535-7163.MCT-10-0552]
Humans
Cell Culture Techniques, Three Dimensional
Cell Line, Tumor
Drug Evaluation, Preclinical
Drug Screening Assays, Antitumor
Kidney Tubules, Proximal
Cell Culture Techniques
Antineoplastic Agents
Automation
Automation, Laboratory
Neoplasms