Deep Attention Fusion Hashing (DAFH) Model for Medical Image Retrieval.

Gangao Wu, Enhui Jin, Yanling Sun, Bixia Tang, Wenming Zhao
Author Information
  1. Gangao Wu: National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China. ORCID
  2. Enhui Jin: National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China. ORCID
  3. Yanling Sun: National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China. ORCID
  4. Bixia Tang: National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China. ORCID
  5. Wenming Zhao: National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China. ORCID

Abstract

In medical image retrieval, accurately retrieving relevant images significantly impacts clinical decision making and diagnostics. Traditional image-retrieval systems primarily rely on single-dimensional image data, while current deep-hashing methods are capable of learning complex feature representations. However, retrieval accuracy and efficiency are hindered by diverse modalities and limited sample sizes.
OBJECTIVE: To address this, we propose a novel deep learning-based hashing model, the Deep Attention Fusion Hashing (DAFH) model, which integrates advanced attention mechanisms with medical imaging data.
METHODS: The DAFH model enhances retrieval performance by integrating multi-modality medical imaging data and employing attention mechanisms to optimize the feature extraction process. Utilizing multimodal medical image data from the Cancer Imaging Archive (TCIA), this study constructed and trained a deep hashing network that achieves high-precision classification of various cancer types.
RESULTS: At hash code lengths of 16, 32, and 48 bits, the model respectively attained Mean Average Precision (MAP@10) values of 0.711, 0.754, and 0.762, highlighting the potential and advantage of the DAFH model in medical image retrieval.
CONCLUSIONS: The DAFH model demonstrates significant improvements in the efficiency and accuracy of medical image retrieval, proving to be a valuable tool in clinical settings.

Keywords

References

  1. J Am Coll Radiol. 2019 Apr;16(4 Pt A):501-507 [PMID: 30522844]
  2. IEEE J Biomed Health Inform. 2017 Jul;21(4):1114-1123 [PMID: 27662689]
  3. Cancer Inform. 2015 Jul 22;13(Suppl 3):125-36 [PMID: 26309389]
  4. Annu Rev Biomed Eng. 2017 Jun 21;19:221-248 [PMID: 28301734]
  5. IEEE Trans Inf Technol Biomed. 2007 Jan;11(1):58-69 [PMID: 17249404]
  6. Health Data Sci. 2021 May 19;2021:8786793 [PMID: 38487506]
  7. Med Image Anal. 2017 Dec;42:60-88 [PMID: 28778026]
  8. J Med Syst. 2018 Oct 8;42(11):226 [PMID: 30298337]
  9. IEEE Trans Image Process. 2017 Jan;26(1):355-368 [PMID: 27849528]
  10. Med Image Anal. 2021 Apr;69:101981 [PMID: 33588123]
  11. J Digit Imaging. 2013 Dec;26(6):1045-57 [PMID: 23884657]
  12. Healthc Inform Res. 2012 Mar;18(1):3-9 [PMID: 22509468]
  13. Algorithms. 2009 Jun 1;2(2):828-849 [PMID: 20305801]
  14. Genomics Proteomics Bioinformatics. 2023 Oct;21(5):1059-1065 [PMID: 37806555]

Grants

  1. Nos. XDB38050300/Strategic Priority Research Program of Chinese Academy of Sciences
  2. No.2023YFC2605700/National Key R&D Program of China

Word Cloud

Created with Highcharts 10.0.0medicalimageretrievalmodelDAFHdatadeephashing0clinicallearningfeatureaccuracyefficiencyDeepAttentionFusionHashingattentionmechanismsimagingaccuratelyretrievingrelevantimagessignificantlyimpactsdecisionmakingdiagnosticsTraditionalimage-retrievalsystemsprimarilyrelysingle-dimensionalcurrentdeep-hashingmethodscapablecomplexrepresentationsHoweverhindereddiversemodalitieslimitedsamplesizesOBJECTIVE:addressproposenovellearning-basedintegratesadvancedMETHODS:enhancesperformanceintegratingmulti-modalityemployingoptimizeextractionprocessUtilizingmultimodalCancerImagingArchiveTCIAstudyconstructedtrainednetworkachieveshigh-precisionclassificationvariouscancertypesRESULTS:hashcodelengths163248bitsrespectivelyattainedMeanAveragePrecisionMAP@10values711754762highlightingpotentialadvantageCONCLUSIONS:demonstratessignificantimprovementsprovingvaluabletoolsettingsModelMedicalImageRetrieval

Similar Articles

Cited By