The role of ribosomal DNA methylation in embryonic development, aging and diseases.

Fei Yang, Xutong Guo, Yiming Bao, Rujiao Li
Author Information
  1. Fei Yang: National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China.
  2. Xutong Guo: National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China.
  3. Yiming Bao: National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China. baoym@big.ac.cn.
  4. Rujiao Li: National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China. lirj@big.ac.cn.

Abstract

The ribosomal DNA (rDNA) constitutes a remarkably conserved DNA sequence within species, located in the area of the nucleolus, and responsible for coding three major types of rRNAs (18S, 5.8S and 28S). While historical investigations into rDNA focused on its structure and coding capabilities, recent research has turned to explore its functional roles in various biological processes. In this review, we summarize the main findings of rDNA methylation with embryonic development, aging and diseases in multiple species, including epigenetic alterations, related biological processes and potential applications of rDNA methylation. We present an overview of current related research and identify gaps in this field.

Keywords

References

  1. World J Oncol. 2019 Apr;10(2):63-89 [PMID: 31068988]
  2. FASEB J. 2000 Sep;14(12):1715-24 [PMID: 10973920]
  3. Mol Biol Cell. 2007 Feb;18(2):394-403 [PMID: 17108330]
  4. Mol Genet Genomic Med. 2019 Jul;7(7):e00783 [PMID: 31169368]
  5. Genes Dev. 2022 Mar 1;36(5-6):331-347 [PMID: 35273077]
  6. Int J Genomics. 2021 Jan 28;2021:8818007 [PMID: 33575316]
  7. Genomics. 1989 Apr;4(3):376-83 [PMID: 2714796]
  8. Bioessays. 2008 Mar;30(3):267-72 [PMID: 18293366]
  9. Nucleic Acids Res. 2022 Jan 7;50(D1):D380-D386 [PMID: 34570235]
  10. Genome Res. 2019 Mar;29(3):325-333 [PMID: 30765617]
  11. J Neurosci. 2005 Oct 5;25(40):9171-5 [PMID: 16207876]
  12. Aging Cell. 2022 Jan;21(1):e13527 [PMID: 34932867]
  13. Nat Commun. 2023 Jan 23;14(1):356 [PMID: 36690642]
  14. Annu Rev Cell Dev Biol. 2008;24:131-57 [PMID: 18616426]
  15. Mol Cell. 2001 Sep;8(3):719-25 [PMID: 11583633]
  16. Science. 2022 Apr;376(6588):44-53 [PMID: 35357919]
  17. Biochem Biophys Res Commun. 2017 Aug 19;490(2):429-433 [PMID: 28624458]
  18. Cell Metab. 2017 Apr 4;25(4):954-960.e6 [PMID: 28380383]
  19. Science. 2016 Jul 29;353(6298):495-8 [PMID: 27386920]
  20. Nat Rev Genet. 2004 Oct;5(10):725-38 [PMID: 15510164]
  21. Signal Transduct Target Ther. 2021 Aug 30;6(1):323 [PMID: 34462428]
  22. Mol Cell. 2013 Jan 24;49(2):359-367 [PMID: 23177740]
  23. Nat Commun. 2019 Jul 16;10(1):3053 [PMID: 31311924]
  24. FEMS Yeast Res. 2014 Feb;14(1):49-59 [PMID: 24373458]
  25. Genome Biol. 2017 Apr 11;18(1):68 [PMID: 28399939]
  26. Cells. 2021 Dec 08;10(12): [PMID: 34943960]
  27. BMC Cancer. 2014 May 22;14:361 [PMID: 24884608]
  28. Microbiol Mol Biol Rev. 2016 Jun 01;80(3):545-63 [PMID: 27250769]
  29. Evol Appl. 2021 Sep 23;14(9):2305-2318 [PMID: 34603500]
  30. Genome Biol. 2015 May 13;16:96 [PMID: 25968125]
  31. Br J Cancer. 2000 Feb;82(3):514-7 [PMID: 10682657]
  32. Clin Cancer Res. 2005 Oct 15;11(20):7376-83 [PMID: 16243810]
  33. Genomics. 2003 Dec;82(6):637-43 [PMID: 14611805]
  34. Mol Cell Biol. 2020 Oct 26;40(22): [PMID: 32900821]
  35. Oncogene. 2012 Mar 8;31(10):1254-63 [PMID: 21822302]
  36. J Biol Chem. 2005 Jun 3;280(22):20978-86 [PMID: 15767256]
  37. Aging (Albany NY). 2022 Feb 14;14(3):1214-1232 [PMID: 35157611]
  38. Nucleic Acids Res. 2022 Jan 7;50(D1):D1004-D1009 [PMID: 34718752]
  39. Brief Bioinform. 2022 Jul 18;23(4): [PMID: 35804466]
  40. Neuropsychopharmacology. 2013 Jan;38(1):23-38 [PMID: 22781841]
  41. Exp Cell Res. 2018 Sep 15;370(2):322-332 [PMID: 29964050]
  42. Nutrients. 2020 Jan 21;12(2): [PMID: 31973116]
  43. Cancer. 2002 Jun 1;94(11):2941-52 [PMID: 12115383]
  44. Mol Cell Biol. 2015 May;35(10):1871-81 [PMID: 25776556]
  45. Trends Genet. 2019 Oct;35(10):710-723 [PMID: 31447250]
  46. Blood. 2012 Dec 6;120(24):4812-8 [PMID: 23071274]
  47. Cytogenet Cell Genet. 1994;66(4):246-9 [PMID: 8162702]
  48. Mol Neurobiol. 2020 Jun;57(6):2563-2571 [PMID: 32232768]
  49. Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1775-80 [PMID: 12574505]
  50. J Biol Chem. 2023 Jun;299(6):104766 [PMID: 37121547]
  51. Neurochem Res. 2006 May;31(5):705-10 [PMID: 16770743]
  52. Biol Reprod. 2016 Jun;94(6):143 [PMID: 26935600]
  53. Trends Genet. 2019 Nov;35(11):868-879 [PMID: 31327501]
  54. Nucleic Acids Res. 2023 Jan 6;51(D1):D208-D216 [PMID: 36318250]
  55. Aging Cell. 2020 Aug;19(8):e13181 [PMID: 32608562]
  56. Nature. 1974 Dec 20;252(5485):741-3 [PMID: 4437633]
  57. Front Genet. 2022 Apr 27;13:792165 [PMID: 35571061]
  58. Nucleic Acids Res. 1991 Aug 11;19(15):4147-51 [PMID: 1870970]
  59. Methods Mol Biol. 2016;1455:161-81 [PMID: 27576718]
  60. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3394-8 [PMID: 4508329]
  61. Genomics. 1995 May 20;27(2):320-8 [PMID: 7557999]
  62. Philos Trans R Soc Lond B Biol Sci. 1990 Jan 30;326(1235):179-87 [PMID: 1968655]
  63. Genome Biol. 2022 Feb 14;23(1):54 [PMID: 35164830]
  64. PLoS One. 2016 Oct 3;11(10):e0163340 [PMID: 27695092]
  65. Genes Dev. 2016 Mar 15;30(6):611-21 [PMID: 26980186]
  66. Aging Cell. 2017 Oct;16(5):966-975 [PMID: 28625020]
  67. Proc Natl Acad Sci U S A. 1977 Feb;74(2):694-7 [PMID: 265531]
  68. PLoS One. 2011;6(7):e22585 [PMID: 21799908]
  69. Epigenetics. 2023 Dec;18(1):2229203 [PMID: 37368968]
  70. J Cell Sci. 2022 Mar 15;135(6): [PMID: 35048992]

Grants

  1. 32300468/National Natural Science Foundation of China

MeSH Term

Humans
DNA Methylation
Embryonic Development
Animals
Aging
DNA, Ribosomal
Epigenesis, Genetic

Chemicals

DNA, Ribosomal

Word Cloud

Created with Highcharts 10.0.0rDNADNAmethylationdevelopmentribosomalspeciescodingresearchbiologicalprocessesembryonicagingdiseasesrelatedconstitutesremarkablyconservedsequencewithinlocatedareanucleolusresponsiblethreemajortypesrRNAs18S58S28ShistoricalinvestigationsfocusedstructurecapabilitiesrecentturnedexplorefunctionalrolesvariousreviewsummarizemainfindingsmultipleincludingepigeneticalterationspotentialapplicationspresentoverviewcurrentidentifygapsfieldroleAgingDiseaseEmbryonicMethylation

Similar Articles

Cited By