Rana M Ibrahim, Passent M Abdel-Baki, Osama G Mohamed, Ahmed A Al-Karmalawy, Ashootosh Tripathi, Riham A El-Shiekh
Even though legumes are valuable medicinal plants with edible seeds that are extensively consumed worldwide, there is little information available on the metabolic variations between different dietary beans and their influence as potential anti-cholinesterase agents. High-resolution liquid chromatography coupled with mass spectrometry in positive and negative ionization modes combined with multivariate analysis were used to explore differences in the metabolic profiles of five commonly edible seeds, fava bean, black-eyed pea, kidney bean, red lentil, and chickpea. A total of 139 metabolites from various classes were identified including saponins, alkaloids, phenolic acids, iridoids, and terpenes. Chickpea showed the highest antioxidant and anti-cholinesterase effects, followed by kidney beans. Supervised and unsupervised chemometric analysis determined that species could be distinguished by their different discriminatory metabolites. The major metabolic pathways in legumes were also studied. Glycerophospholipid metabolism was the most significantly enriched KEGG pathway. Pearson's correlation analysis pinpointed 18 metabolites that were positively correlated with the anti-cholinesterase activity. Molecular docking of the biomarkers to the active sites of acetyl- and butyryl-cholinesterase enzymes revealed promising binding scores, validating the correlation results. The present study will add to the metabolomic analysis of legumes and their nutritional value and advocate their inclusion in anti-Alzheimer's formulations.
J Agric Food Chem. 2003 Feb 26;51(5):1181-8
[PMID:
12590454]
J Agric Food Chem. 2003 Mar 26;51(7):1845-9
[PMID:
12643640]
Curr Alzheimer Res. 2019;16(6):529-543
[PMID:
30873922]
J Med Chem. 2009 Nov 26;52(22):7249-57
[PMID:
19856923]
J Enzyme Inhib Med Chem. 2023 Dec;38(1):2202357
[PMID:
37092260]
Anal Bioanal Chem. 2018 Feb;410(5):1561-1569
[PMID:
29270658]
Nutrients. 2017 May 10;9(5):
[PMID:
28489058]
Environ Sci Technol. 2014;48(3):1811-8
[PMID:
24417318]
J Enzyme Inhib Med Chem. 2020 Dec;35(1):211-226
[PMID:
31760822]
Biomed Pharmacother. 2020 Aug;128:110303
[PMID:
32480228]
Nutrients. 2018 Nov 04;10(11):
[PMID:
30400385]
Molecules. 2019 Oct 18;24(20):
[PMID:
31635434]
Molecules. 2023 Mar 11;28(6):
[PMID:
36985531]
Metabolomics. 2007 Sep;3(3):211-221
[PMID:
24039616]
Curr Drug Targets. 2018;19(14):1710-1720
[PMID:
29577854]
Future Med Chem. 2021 Oct;13(19):1623-1638
[PMID:
34505541]
Food Chem. 2014 Mar 1;146:270-7
[PMID:
24176342]
Nutrients. 2022 Oct 02;14(19):
[PMID:
36235754]
Sci Rep. 2022 Aug 16;12(1):13880
[PMID:
35974029]
Z Naturforsch C J Biosci. 2007 Nov-Dec;62(11-12):829-32
[PMID:
18274286]
Foods. 2020 Apr 02;9(4):
[PMID:
32252270]
Food Res Int. 2019 Dec;126:108666
[PMID:
31732019]
J Basic Clin Physiol Pharmacol. 2020 Apr 7;31(3):
[PMID:
32267245]
Molecules. 2022 Feb 08;27(3):
[PMID:
35164382]
Molecules. 2020 Jan 10;25(2):
[PMID:
31936853]
J Exp Bot. 2023 Jan 1;74(1):130-148
[PMID:
36205079]
Pharmacogn Rev. 2012 Jul;6(12):81-90
[PMID:
23055633]
Eur J Pharmacol. 2021 May 5;898:173974
[PMID:
33652057]
Steroids. 2023 May;193:109198
[PMID:
36780968]
BMC Res Notes. 2015 Oct 30;8:621
[PMID:
26518275]
J Agric Food Chem. 2013 Feb 27;61(8):1702-9
[PMID:
23305351]
J Pharmacol Sci. 2011;116(2):150-62
[PMID:
21606627]
Food Chem. 2023 Aug 15;417:135866
[PMID:
36913868]
J Proteomics. 2012 Feb 2;75(4):1411-27
[PMID:
22134358]
Int J Mol Sci. 2015 Jun 15;16(6):13678-91
[PMID:
26084047]
J Enzyme Inhib Med Chem. 2022 Dec;37(1):2112-2132
[PMID:
35912578]
Int J Mol Sci. 2022 Jan 21;23(3):
[PMID:
35163136]
Fitoterapia. 2011 Jun;82(4):676-81
[PMID:
21338657]
Molecules. 2021 Jun 15;26(12):
[PMID:
34203808]
Food Chem. 2018 Sep 15;260:317-326
[PMID:
29699675]
ACS Omega. 2022 May 11;7(20):17339-17357
[PMID:
35647470]
Plants (Basel). 2023 Jul 19;12(14):
[PMID:
37514301]
ACS Omega. 2023 Aug 14;8(33):30221-30230
[PMID:
37636925]
Food Chem. 2016 Feb 1;192:965-71
[PMID:
26304436]
J Chromatogr A. 2004 Oct 29;1054(1-2):181-93
[PMID:
15553143]
J Biosci Bioeng. 2005 Nov;100(5):511-6
[PMID:
16384789]
J Agric Food Chem. 2011 Mar 23;59(6):2268-76
[PMID:
21332205]
Plant Foods Hum Nutr. 2024 Jun;79(2):359-366
[PMID:
38607508]
Molecules. 2022 Aug 19;27(16):
[PMID:
36014535]
Fitoterapia. 2015 Jun;103:136-42
[PMID:
25818229]
Curr Med Chem. 2021;28(23):4799-4825
[PMID:
32744957]
Int J Food Microbiol. 2015 Mar 2;196:51-61
[PMID:
25522057]
Front Pharmacol. 2019 Nov 26;10:1417
[PMID:
31849668]
Molecules. 2022 Dec 16;27(24):
[PMID:
36558128]
Mol Plant. 2015 Jan;8(1):111-21
[PMID:
25578276]
Int J Mol Sci. 2022 Oct 13;23(20):
[PMID:
36293094]
Nat Prod Res. 2024 Jun;38(12):2155-2159
[PMID:
37516925]
J Agric Food Chem. 2009 Dec 9;57(23):11226-33
[PMID:
19950999]
Plants (Basel). 2022 Nov 29;11(23):
[PMID:
36501324]
Metabolites. 2022 May 17;12(5):
[PMID:
35629955]
Molecules. 2023 Feb 15;28(4):
[PMID:
36838827]
Arch Biochem Biophys. 2014 Oct 1;559:68-74
[PMID:
24791600]