Gravitational instability in a planet-forming disk.

Jessica Speedie, Ruobing Dong, Cassandra Hall, Cristiano Longarini, Benedetta Veronesi, Teresa Paneque-Carreño, Giuseppe Lodato, Ya-Wen Tang, Richard Teague, Jun Hashimoto
Author Information
  1. Jessica Speedie: Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada. jspeedie@uvic.ca. ORCID
  2. Ruobing Dong: Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada. rbdong@uvic.ca. ORCID
  3. Cassandra Hall: Department of Physics and Astronomy, The University of Georgia, Athens, GA, USA. ORCID
  4. Cristiano Longarini: Università degli Studi di Milano, Milan, Italy. ORCID
  5. Benedetta Veronesi: Univ Lyon, Univ Lyon1, Ens de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, Saint-Genis-Laval, France.
  6. Teresa Paneque-Carreño: Leiden Observatory, Leiden University, Leiden, The Netherlands. ORCID
  7. Giuseppe Lodato: Università degli Studi di Milano, Milan, Italy.
  8. Ya-Wen Tang: Institute of Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan.
  9. Richard Teague: Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
  10. Jun Hashimoto: Astrobiology Center, National Institutes of Natural Sciences, Mitaka, Japan. ORCID

Abstract

The canonical theory for planet formation in circumstellar disks proposes that planets are grown from initially much smaller seeds. The long-considered alternative theory proposes that giant protoplanets can be formed directly from collapsing fragments of vast spiral arms induced by gravitational instability-if the disk is gravitationally unstable. For this to be possible, the disk must be massive compared with the central star: a disk-to-star mass ratio of 1:10 is widely held as the rough threshold for triggering gravitational instability, inciting substantial non-Keplerian dynamics and generating prominent spiral arms. Although estimating disk masses has historically been challenging, the motion of the gas can reveal the presence of gravitational instability through its effect on the disk-velocity structure. Here we present kinematic evidence of gravitational instability in the disk around AB Aurigae, using deep observations of CO and CO line emission with the Atacama Large Millimeter/submillimeter Array (ALMA). The observed kinematic signals strongly resemble predictions from simulations and analytic modelling. From quantitative comparisons, we infer a disk mass of up to a third of the stellar mass enclosed within 1″ to 5″ on the sky.

References

Chiang, E. & Youdin, A. N. Forming planetesimals in solar and extrasolar nebulae. Annu. Rev. Earth Planet. Sci. 38, 493–522 (2010). [DOI: 10.1146/annurev-earth-040809-152513]
Johansen, A. & Lambrechts, M. Forming planets via pebble accretion. Annu. Rev. Earth Planet. Sci. 45, 359–387 (2017). [DOI: 10.1146/annurev-earth-063016-020226]
Ormel, C. W. Formation, Evolution, and Dynamics of Young Solar Systems. Astrophysics and Space Science Library Vol. 445 (eds Pessah, M. & Gressel, O.) 197–228 (Springer, 2017).
Liu, B. & Ji, J. A tale of planet formation: from dust to planets. Res. Astron. Astrophys. 20, 164 (2020). [DOI: 10.1088/1674-4527/20/10/164]
Drążkowska, J. et al. Planet formation theory in the era of ALMA and Kepler: from pebbles to exoplanets. In Protostars and Planets VII Vol. 534 of the Astronomical Society of the Pacific Conference Series (eds Inutsuka, S. et al.) 717 (ASP, 2023).
Boss, A. P. Giant planet formation by gravitational instability. Science 276, 1836–1839 (1997). [DOI: 10.1126/science.276.5320.1836]
Gammie, C. F. Nonlinear outcome of gravitational instability in cooling, gaseous disks. Astrophys. J. 553, 174–183 (2001). [DOI: 10.1086/320631]
Rice, W. K. M. et al. Substellar companions and isolated planetary-mass objects from protostellar disc fragmentation. Mon. Not. R. Astron. Soc. 346, L36–L40 (2003). [DOI: 10.1111/j.1365-2966.2003.07317.x]
Zhu, Z., Hartmann, L., Nelson, R. P. & Gammie, C. F. Challenges in forming planets by gravitational instability: disk irradiation and clump migration, accretion, and tidal destruction. Astrophys. J. 746, 110 (2012). [DOI: 10.1088/0004-637X/746/1/110]
Deng, H., Mayer, L. & Helled, R. Formation of intermediate-mass planets via magnetically controlled disk fragmentation. Nat. Astron. 5, 440–444 (2021). [DOI: 10.1038/s41550-020-01297-6]
Cadman, J., Rice, K. & Hall, C. AB Aurigae: possible evidence of planet formation through the gravitational instability. Mon. Not. R. Astron. Soc. 504, 2877–2888 (2021). [DOI: 10.1093/mnras/stab905]
Lodato, G. & Rice, W. K. M. Testing the locality of transport in self-gravitating accretion discs. Mon. Not. R. Astron. Soc. 351, 630–642 (2004). [DOI: 10.1111/j.1365-2966.2004.07811.x]
Cossins, P., Lodato, G. & Clarke, C. J. Characterizing the gravitational instability in cooling accretion discs. Mon. Not. R. Astron. Soc. 393, 1157–1173 (2009). [DOI: 10.1111/j.1365-2966.2008.14275.x]
Dipierro, G., Lodato, G., Testi, L. & de Gregorio Monsalvo, I. How to detect the signatures of self-gravitating circumstellar discs with the Atacama Large Millimeter/sub-millimeter Array. Mon. Not. R. Astron. Soc. 444, 1919–1929 (2014). [DOI: 10.1093/mnras/stu1584]
Kratter, K. & Lodato, G. Gravitational instabilities in circumstellar disks. Annu. Rev. Astron. Astrophys. 54, 271–311 (2016). [DOI: 10.1146/annurev-astro-081915-023307]
Dong, R., Hall, C., Rice, K. & Chiang, E. Spiral arms in gravitationally unstable protoplanetary disks as imaged in scattered light. Astrophys. J. Lett. 812, L32 (2015). [DOI: 10.1088/2041-8205/812/2/L32]
Hall, C. et al. Directly observing continuum emission from self-gravitating spiral waves. Mon. Not. R. Astron. Soc. 458, 306–318 (2016). [DOI: 10.1093/mnras/stw296]
Hall, C. et al. The temporal requirements of directly observing self-gravitating spiral waves in protoplanetary disks with ALMA. Astrophys. J. 871, 228 (2019). [DOI: 10.3847/1538-4357/aafac2]
Paneque-Carreño, T. et al. Spiral arms and a massive dust disk with non-Keplerian kinematics: possible evidence for gravitational instability in the disk of Elias 2–27. Astrophys. J. 914, 88 (2021). [DOI: 10.3847/1538-4357/abf243]
Veronesi, B. et al. A dynamical measurement of the disk mass in Elias 227. Astrophys. J. Lett. 914, L27 (2021). [DOI: 10.3847/2041-8213/abfe6a]
Stapper, L. M. et al. Constraining the gas mass of Herbig disks using CO isotopologues. Astron. Astrophys. 682, A149 (2024). [DOI: 10.1051/0004-6361/202347271]
Hall, C. et al. Predicting the kinematic evidence of gravitational instability. Astrophys. J. 904, 148 (2020). [DOI: 10.3847/1538-4357/abac17]
Longarini, C. et al. Investigating protoplanetary disk cooling through kinematics: analytical GI wiggle. Astrophys. J. Lett. 920, L41 (2021). [DOI: 10.3847/2041-8213/ac2df6]
Terry, J. P. et al. Constraining protoplanetary disc mass using the GI wiggle. Mon. Not. R. Astron. Soc. 510, 1671–1679 (2022). [DOI: 10.1093/mnras/stab3513]
van den Ancker, M. E. et al. HIPPARCOS data on Herbig Ae/Be stars: an evolutionary scenario. Astron. Astrophys. 324, L33–L36 (1997).
DeWarf, L. E., Sepinsky, J. F., Guinan, E. F., Ribas, I. & Nadalin, I. Intrinsic properties of the young stellar object SU Aurigae. Astrophys. J. 590, 357–367 (2003). [DOI: 10.1086/374979]
Beck, T. L. & Bary, J. S. A search for spatially resolved infrared rovibrational molecular hydrogen emission from the disks of young stars. Astrophys. J. 884, 159 (2019). [DOI: 10.3847/1538-4357/ab4259]
Garufi, A. et al. The SPHERE view of the Taurus star-forming region. Astron. Astrophys. 685, A53 (2024). [DOI: 10.1051/0004-6361/202347586]
Rodríguez, L. F. et al. An ionized outflow from AB Aur, a Herbig Ae Star with a transitional disk. Astrophys. J. Lett. 793, L21 (2014). [DOI: 10.1088/2041-8205/793/1/L21]
Guzmán-Díaz, J. et al. Homogeneous study of Herbig Ae/Be stars from spectral energy distributions and Gaia EDR3. Astron. Astrophys. 650, A182 (2021). [DOI: 10.1051/0004-6361/202039519]
Gaia Collaboration. Gaia Data Release 3. Summary of the content and survey properties. Astron. Astrophys. 674, A1 (2023). [DOI: 10.1051/0004-6361/202243940]
Henning, T., Burkert, A., Launhardt, R., Leinert, C. & Stecklum, B. Infrared imaging and millimetre continuum mapping of Herbig Ae/Be and FU Orionis stars. Astron. Astrophys. 336, 565–586 (1998).
Bouwman, J., de Koter, A., van den Ancker, M. E. & Waters, L. B. F. M. The composition of the circumstellar dust around the Herbig Ae stars AB Aur and HD 163296. Astron. Astrophys. 360, 213–226 (2000).
Pérez, L. M. et al. Spiral density waves in a young protoplanetary disk. Science 353, 1519–1521 (2016). [PMID: 27708098]
Boccaletti, A. et al. Possible evidence of ongoing planet formation in AB Aurigae. A showcase of the SPHERE/ALMA synergy. Astron. Astrophys. 637, L5 (2020). [DOI: 10.1051/0004-6361/202038008]
Dong, R., Vorobyov, E., Pavlyuchenkov, Y., Chiang, E. & Liu, H. B. Signatures of gravitational instability in resolved images of protostellar disks. Astrophys. J. 823, 141 (2016). [DOI: 10.3847/0004-637X/823/2/141]
Hashimoto, J. et al. Direct imaging of fine structures in giant planet-forming regions of the protoplanetary disk around AB Aurigae. Astrophys. J. Lett. 729, L17 (2011). [DOI: 10.1088/2041-8205/729/2/L17]
Fukagawa, M. et al. Spiral structure in the circumstellar disk around AB Aurigae. Astrophys. J. Lett. 605, L53–L56 (2004). [DOI: 10.1086/420699]
Lin, S.-Y. et al. Possible molecular spiral arms in the protoplanetary disk of AB Aurigae. Astrophys. J. 645, 1297–1304 (2006). [DOI: 10.1086/504368]
Perrin, M. D. et al. The case of AB Aurigae’s disk in polarized light: is there truly a gap? Astrophys. J. Lett. 707, L132–L136 (2009). [DOI: 10.1088/0004-637X/707/2/L132]
Teague, R. & Foreman-Mackey, D. A robust method to measure centroids of spectral lines. Res. Notes AAS 2, 173 (2018). [DOI: 10.3847/2515-5172/aae265]
Teague, R. Statistical uncertainties in moment maps of line emission. Res. Notes AAS 3, 74 (2019). [DOI: 10.3847/2515-5172/ab2125]
Lodato, G. & Rice, W. K. M. Testing the locality of transport in self-gravitating accretion discs — II. The massive disc case. Mon. Not. R. Astron. Soc. 358, 1489–1500 (2005). [DOI: 10.1111/j.1365-2966.2005.08875.x]
Oppenheimer, B. R. et al. The solar-system-scale disk around AB Aurigae. Astrophys. J. 679, 1574–1581 (2008). [DOI: 10.1086/587778]
Tang, Y.-W. et al. Planet formation in AB Aurigae: imaging of the inner gaseous spirals observed inside the dust cavity. Astrophys. J. 840, 32 (2017). [DOI: 10.3847/1538-4357/aa6af7]
Currie, T. et al. Images of embedded Jovian planet formation at a wide separation around AB Aurigae. Nat. Astron. 6, 751–759 (2022). [DOI: 10.1038/s41550-022-01634-x]
Rice, W. K. M., Lodato, G., Pringle, J. E., Armitage, P. J. & Bonnell, I. A. Accelerated planetesimal growth in self-gravitating protoplanetary discs. Mon. Not. R. Astron. Soc. 355, 543–552 (2004). [DOI: 10.1111/j.1365-2966.2004.08339.x]
Longarini, C., Armitage, P. J., Lodato, G., Price, D. J. & Ceppi, S. The role of the drag force in the gravitational stability of dusty planet-forming disc – II. Numerical simulations. Mon. Not. R. Astron. Soc. 522, 6217–6235 (2023). [DOI: 10.1093/mnras/stad1400]
Booth, R. A. & Clarke, C. J. Collision velocity of dust grains in self-gravitating protoplanetary discs. Mon. Not. R. Astron. Soc. 458, 2676–2693 (2016). [PMID: 27346980]
Rowther, S. et al. The role of drag and gravity on dust concentration in a gravitationally unstable disc. Mon. Not. R. Astron. Soc. 528, 2490–2500 (2024). [DOI: 10.1093/mnras/stae167]
Salyk, C. et al. Measuring protoplanetary disk accretion with H I Pfund β. Astrophys. J. 769, 21 (2013). [DOI: 10.1088/0004-637X/769/1/21]
Rice, W. K. M. & Armitage, P. J. Time-dependent models of the structure and stability of self-gravitating protoplanetary discs. Mon. Not. R. Astron. Soc. 396, 2228–2236 (2009). [DOI: 10.1111/j.1365-2966.2009.14879.x]
Hartmann, L., Calvet, N., Gullbring, E. & D’Alessio, P. Accretion and the evolution of T Tauri disks. Astrophys. J. 495, 385–400 (1998). [DOI: 10.1086/305277]
Dong, R., Najita, J. R. & Brittain, S. Spiral arms in disks: planets or gravitational instability? Astrophys. J. 862, 103 (2018). [DOI: 10.3847/1538-4357/aaccfc]
Sicilia-Aguilar, A., Henning, T. & Hartmann, L. W. Accretion in evolved and transitional disks in CEP OB2: looking for the origin of the inner holes. Astrophys. J. 710, 597–612 (2010). [DOI: 10.1088/0004-637X/710/1/597]
Tang, Y. W. et al. The circumstellar disk of AB Aurigae: evidence for envelope accretion at late stages of star formation? Astron. Astrophys. 547, A84 (2012). [DOI: 10.1051/0004-6361/201219414]
Nakajima, T. & Golimowski, D. A. Coronagraphic imaging of pre-main-sequence stars: remnant envelopes of star formation seen in reflection. Astron. J. 109, 1181–1198 (1995). [DOI: 10.1086/117351]
Grady, C. A. et al. Hubble Space Telescope space telescope imaging spectrograph coronagraphic imaging of the Herbig AE star AB Aurigae. Astrophys. J. Lett. 523, L151–L154 (1999). [DOI: 10.1086/312270]
Rivière-Marichalar, P. et al. AB Aur, a Rosetta stone for studies of planet formation. I. Chemical study of a planet-forming disk. Astron. Astrophys. 642, A32 (2020). [DOI: 10.1051/0004-6361/202038549]
Ediss, G. A. et al. in Proc. 15th International Symposium on Space Terahertz Technology (ed. Narayanan, G.) 181–188 (ISSTT, 2004).
Cornwell, T. J. Multiscale CLEAN deconvolution of radio synthesis images. IEEE J. Sel. Top. Signal Process. 2, 793–801 (2008). [DOI: 10.1109/JSTSP.2008.2006388]
Kepley, A. A. et al. Auto-multithresh: a general purpose automasking algorithm. Publ. Astron. Soc. Pac. 132, 024505 (2020). [DOI: 10.1088/1538-3873/ab5e14]
Leroy, A. K. et al. PHANGS-ALMA data processing and pipeline. Astrophys. J. Suppl. Ser. 255, 19 (2021). [DOI: 10.3847/1538-4365/abec80]
Jorsater, S. & van Moorsel, G. A. High resolution neutral hydrogen observations of the barred spiral galaxy NGC 1365. Astron. J. 110, 2037 (1995). [DOI: 10.1086/117668]
Czekala, I. et al. Molecules with ALMA at Planet-forming Scales (MAPS). II. CLEAN strategies for synthesizing images of molecular line emission in protoplanetary disks. Astrophys. J. Suppl. Ser. 257, 2 (2021). [DOI: 10.3847/1538-4365/ac1430]
Teague, R. & Foreman-Mackey, D. bettermoments: a robust method to measure line centroids. Zenodo https://doi.org/10.5281/zenodo.1419753 (2018).
Teague, R. eddy: extracting protoplanetary disk dynamics with Python. J. Open Source Softw. 4, 1220 (2019). [DOI: 10.21105/joss.01220]
Gaia Collaboration. The Gaia mission. Astron. Astrophys. 595, A1 (2016). [DOI: 10.1051/0004-6361/201629272]
Piétu, V., Guilloteau, S. & Dutrey, A. Sub-arcsec imaging of the AB Aur molecular disk and envelope at millimeter wavelengths: a non Keplerian disk. Astron. Astrophys. 443, 945–954 (2005). [DOI: 10.1051/0004-6361]
Price, D. J. et al. Phantom: a smoothed particle hydrodynamics and magnetohydrodynamics code for astrophysics. Publ. Astron. Soc. Aust. 35, e031 (2018). [DOI: 10.1017/pasa.2018.25]
Bate, M. R., Bonnell, I. A. & Price, N. M. Modelling accretion in protobinary systems. Mon. Not. R. Astron. Soc. 277, 362–376 (1995). [DOI: 10.1093/mnras/277.2.362]
Cullen, L. & Dehnen, W. Inviscid smoothed particle hydrodynamics. Mon. Not. R. Astron. Soc. 408, 669–683 (2010). [DOI: 10.1111/j.1365-2966.2010.17158.x]
Pinte, C., Ménard, F., Duchêne, G. & Bastien, P. Monte Carlo radiative transfer in protoplanetary disks. Astron. Astrophys. 459, 797–804 (2006). [DOI: 10.1051/0004-6361]
Pinte, C. et al. Benchmark problems for continuum radiative transfer. High optical depths, anisotropic scattering, and polarisation. Astron. Astrophys. 498, 967–980 (2009). [DOI: 10.1051/0004-6361/200811555]
Pinte, C. et al. Kinematic evidence for an embedded protoplanet in a circumstellar disk. Astrophys. J. Lett. 860, L13 (2018). [DOI: 10.3847/2041-8213/aac6dc]
Li, D. et al. An ordered magnetic field in the protoplanetary disk of AB Aur revealed by mid-infrared polarimetry. Astrophys. J. 832, 18 (2016). [DOI: 10.3847/0004-637X/832/1/18]
Hillenbrand, L. A., Strom, S. E., Vrba, F. J. & Keene, J. Herbig Ae/Be stars: intermediate-mass stars surrounded by massive circumstellar accretion disks. Astrophys. J. 397, 613–643 (1992). [DOI: 10.1086/171819]
Natta, A. et al. A reconsideration of disk properties in Herbig Ae stars. Astron. Astrophys. 371, 186–197 (2001). [DOI: 10.1051/0004-6361]
Lodato, G. Classical disc physics. New Astron. Rev. 52, 21–41 (2008). [DOI: 10.1016/j.newar.2008.04.002]
Rosotti, G. P. et al. Spiral arms in the protoplanetary disc HD100453 detected with ALMA: evidence for binary–disc interaction and a vertical temperature gradient. Mon. Not. R. Astron. Soc. 491, 1335–1347 (2020). [DOI: 10.1093/mnras/stz3090]
Meru, F. et al. On the origin of the spiral morphology in the Elias 2–27 circumstellar disk. Astrophys. J. Lett. 839, L24 (2017). [DOI: 10.3847/2041-8213/aa6837]
Zhang, Y. et al. Disk evolution study through imaging of nearby young stars (DESTINYS): diverse outcomes of binary–disk interactions. Astron. Astrophys. 672, A145 (2023). [DOI: 10.1051/0004-6361/202245577]
Norfolk, B. J. et al. The origin of the Doppler flip in HD 100546: a large-scale spiral arm generated by an inner binary companion. Astrophys. J. Lett. 936, L4 (2022). [DOI: 10.3847/2041-8213/ac85ed]
Ginski, C. et al. Direct detection of scattered light gaps in the transitional disk around HD 97048 with VLT/SPHERE. Astron. Astrophys. 595, A112 (2016). [DOI: 10.1051/0004-6361/201629265]
Goodman, J. & Rafikov, R. R. Planetary torques as the viscosity of protoplanetary disks. Astrophys. J. 552, 793–802 (2001). [DOI: 10.1086/320572]
Rafikov, R. R. Nonlinear propagation of planet-generated tidal waves. Astrophys. J. 569, 997–1008 (2002). [DOI: 10.1086/339399]
Ogilvie, G. I. & Lubow, S. H. On the wake generated by a planet in a disc. Mon. Not. R. Astron. Soc. 330, 950–954 (2002). [DOI: 10.1046/j.1365-8711.2002.05148.x]
Bollati, F., Lodato, G., Price, D. J. & Pinte, C. The theory of kinks – I. A semi-analytic model of velocity perturbations due to planet–disc interaction. Mon. Not. R. Astron. Soc. 504, 5444–5454 (2021). [DOI: 10.1093/mnras/stab1145]
Hilder, T., Fasano, D., Bollati, F. & Vandenberg, J. Wakeflow: a Python package for semi-analytic models of planetary wakes. J. Open Source Softw. 8, 4863 (2023). [DOI: 10.21105/joss.04863]
Zhou, Y. et al. UV-optical emission of AB Aur b is consistent with scattered stellar light. Astron. J. 166, 220 (2023). [DOI: 10.3847/1538-3881/acf9ec]
Biddle, L. I., Bowler, B. P., Zhou, Y., Franson, K. & Zhang, Z. Deep Paβ imaging of the candidate accreting protoplanet AB Aur b. Astron. J. 167, 172 (2024). [DOI: 10.3847/1538-3881/ad2a52]
Currie, T. Direct imaging detection of the protoplanet AB Aur b at wavelengths covering Paβ. Res. Notes AAS 8, 146 (2024). [DOI: 10.3847/2515-5172/ad50ce]
Zhu, Z., Dong, R., Stone, J. M. & Rafikov, R. R. The structure of spiral shocks excited by planetary-mass companions. Astrophys. J. 813, 88 (2015). [DOI: 10.1088/0004-637X/813/2/88]
Zhang, S. & Zhu, Z. The effects of disc self-gravity and radiative cooling on the formation of gaps and spirals by young planets. Mon. Not. R. Astron. Soc. 493, 2287–2305 (2020). [DOI: 10.1093/mnras/staa404]
Dullemond, C. P. et al. The Disk Substructures at High Angular Resolution Project (DSHARP). VI. Dust trapping in thin-ringed protoplanetary disks. Astrophys. J. Lett. 869, L46 (2018). [DOI: 10.3847/2041-8213/aaf742]
Birnstiel, T. et al. The Disk Substructures at High Angular Resolution Project (DSHARP). V. Interpreting ALMA maps of protoplanetary disks in terms of a dust model. Astrophys. J. Lett. 869, L45 (2018). [DOI: 10.3847/2041-8213/aaf743]

Word Cloud

Similar Articles

Cited By