Élodie Reboussin, Paul Bastelica, Ilyes Benmessabih, Arnaud Cordovilla, Cécile Delarasse, Annabelle Réaux-Le Goazigo, Françoise Brignole-Baudouin, Céline Olmière, Christophe Baudouin, Juliette Buffault, Stéphane Mélik Parsadaniantz
BACKGROUND: Glaucoma is a leading cause of blindness, affecting retinal ganglion cells (RGCs) and their axons. By 2040, it is likely to affect 110 million people. Neuroinflammation, specifically through the release of proinflammatory cytokines by M1 microglial cells, plays a crucial role in glaucoma progression. Indeed, in post-mortem human studies, pre-clinical models, and ex-vivo models, RGC degeneration has been consistently shown to be linked to inflammation in response to cell death and tissue damage. Recently, Rho kinase inhibitors (ROCKis) have emerged as potential therapies for neuroinflammatory and neurodegenerative diseases. This study aimed to investigate the potential effects of three ROCKis (Y-27632, Y-33075, and H-1152) on retinal ganglion cell (RGC) loss and retinal neuroinflammation using an ex-vivo retinal explant model.
METHODS: Rat retinal explants underwent optic nerve axotomy and were treated with Y-27632, Y-33075, or H-1152. The neuroprotective effects on RGCs were evaluated using immunofluorescence and Brn3a-specific markers. Reactive glia and microglial activation were studied by GFAP, CD68, and Iba1 staining. Flow cytometry was used to quantify day ex-vivo 4 (DEV 4) microglial proliferation and M1 activation by measuring the number of CD11b, CD68, and CD11b/CD68 cells after treatment with control solvent or Y-33075. The modulation of gene expression was measured by RNA-seq analysis on control and Y-33075-treated explants and glial and pro-inflammatory cytokine gene expression was validated by RT-qPCR.
RESULTS: Y-27632 and H-1152 did not significantly protect RGCs. By contrast, at DEV 4, 50 µM Y-33075 significantly increased RGC survival. Immunohistology showed a reduced number of Iba1/CD68 cells and limited astrogliosis with Y-33075 treatment. Flow cytometry confirmed lower CD11b, CD68, and CD11b/CD68 cell numbers in the Y-33075 group. RNA-seq showed Y-33075 inhibited the expression of M1 microglial markers (Tnfα, Il-1β, Nos2) and glial markers (Gfap, Itgam, Cd68) and to reduce apoptosis, ferroptosis, inflammasome formation, complement activation, TLR pathway activation, and P2rx7 and Gpr84 gene expression. Conversely, Y-33075 upregulated RGC-specific markers, neurofilament formation, and neurotransmitter regulator expression, consistent with its neuroprotective effects.
CONCLUSION: Y-33075 demonstrates marked neuroprotective and anti-inflammatory effects, surpassing the other tested ROCKis (Y-27632 and H-1152) in preventing RGC death and reducing microglial inflammatory responses. These findings highlight its potential as a therapeutic option for glaucoma.
Cell Physiol Biochem. 2013;32(1):218-34
[PMID:
23899884]
Exp Neurol. 2007 May;205(1):230-40
[PMID:
17359977]
Expert Opin Ther Pat. 2019 Oct;29(10):817-827
[PMID:
31573364]
Neuron. 2022 Nov 2;110(21):3458-3483
[PMID:
36327895]
Invest Ophthalmol Vis Sci. 2010 Nov;51(11):5697-707
[PMID:
20538986]
Invest Ophthalmol Vis Sci. 2019 May 1;60(6):1914-1927
[PMID:
31042799]
Cells. 2021 Mar 07;10(3):
[PMID:
33799995]
Clin Exp Ophthalmol. 2019 Mar;47(2):274-285
[PMID:
30378239]
Pharmacol Ther. 2018 Sep;189:1-21
[PMID:
29621594]
Electrophoresis. 2012 Dec;33(24):3659-68
[PMID:
23161464]
Front Neuroanat. 2017 Sep 05;11:77
[PMID:
28928639]
Int Ophthalmol. 2022 Jan;42(1):281-294
[PMID:
34453229]
Tissue Cell. 2018 Apr;51:1-7
[PMID:
29622082]
Mol Neurobiol. 2016 Mar;53(2):1181-1194
[PMID:
25598354]
Mol Ther. 2023 Jun 7;31(6):1846-1856
[PMID:
36860134]
J Neurosci Res. 2019 Jan;97(1):70-76
[PMID:
29775216]
Graefes Arch Clin Exp Ophthalmol. 2008 Jan;246(1):51-9
[PMID:
17763865]
Mol Neurodegener. 2020 Apr 15;15(1):26
[PMID:
32295623]
Prog Retin Eye Res. 2023 Mar;93:101169
[PMID:
36736070]
Prog Retin Eye Res. 2021 Jul;83:100916
[PMID:
33075485]
Front Aging Neurosci. 2017 Jul 06;9:214
[PMID:
28729832]
Oncol Rep. 2013 Mar;29(3):1140-6
[PMID:
23258382]
PLoS One. 2023 Jan 23;18(1):e0280548
[PMID:
36689408]
Surv Ophthalmol. 2021 Sep-Oct;66(5):693-713
[PMID:
33582161]
Prog Neurobiol. 2015 Aug;131:105-19
[PMID:
26093354]
Lancet. 2023 Nov 11;402(10414):1788-1801
[PMID:
37742700]
Exp Eye Res. 2017 May;158:33-42
[PMID:
27443501]
J Exp Pharmacol. 2021 Feb 25;13:197-212
[PMID:
33664600]
Front Immunol. 2022 Feb 17;13:843558
[PMID:
35251042]
Glia. 2023 Nov;71(11):2609-2622
[PMID:
37470163]
Curr Eye Res. 2011 Oct;36(10):964-70
[PMID:
21950703]
Invest Ophthalmol Vis Sci. 2009 Jan;50(1):452-61
[PMID:
18757509]
Invest Ophthalmol Vis Sci. 2007 Jul;48(7):3216-22
[PMID:
17591891]
Mol Cell Neurosci. 2009 Dec;42(4):427-37
[PMID:
19782753]
Neuroimmunomodulation. 2013;20(6):334-40
[PMID:
24008512]
Invest Ophthalmol Vis Sci. 2013 Mar 01;54(3):2163-70
[PMID:
23449724]
Exp Eye Res. 2017 May;158:23-32
[PMID:
27593914]
Prog Retin Eye Res. 2022 Mar;87:100998
[PMID:
34348167]
Drugs. 2019 Jul;79(10):1031-1036
[PMID:
31134520]
Trends Pharmacol Sci. 2007 Sep;28(9):465-72
[PMID:
17692395]
J Neurosci Res. 2001 Jun 1;64(5):523-32
[PMID:
11391707]
J Neuroinflammation. 2016 Feb 20;13:44
[PMID:
26897546]
Nat Neurosci. 2007 Apr;10(4):436-43
[PMID:
17369826]
Arch Ophthalmol. 2008 Mar;126(3):309-15
[PMID:
18332309]
Biomater Adv. 2022 Jul;138:212936
[PMID:
35913229]
Neuropharmacology. 2023 Feb 1;223:109332
[PMID:
36372269]
J Neuroinflammation. 2014 Jun 03;11:98
[PMID:
24889886]
Curr Eye Res. 2009 Apr;34(4):282-6
[PMID:
19373576]
J Glaucoma. 2012 Oct-Nov;21(8):530-8
[PMID:
22495072]
Neural Regen Res. 2019 Mar;14(3):391-394
[PMID:
30539803]
Indian J Ophthalmol. 2022 Jun;70(6):1920-1930
[PMID:
35647957]
Arch Toxicol. 2015 Jan;89(1):73-85
[PMID:
24760326]
Invest Ophthalmol Vis Sci. 2017 Jun 1;58(7):2991-3003
[PMID:
28605810]
Prog Retin Eye Res. 2021 Mar;81:100880
[PMID:
32721458]
JAMA. 2014 May 14;311(18):1901-11
[PMID:
24825645]
Invest Ophthalmol Vis Sci. 2011 May 17;52(6):3309-20
[PMID:
21345987]
Cells. 2020 Feb 25;9(3):
[PMID:
32106630]
J Neuroinflammation. 2022 Mar 2;19(1):63
[PMID:
35236378]
Front Pharmacol. 2021 Jul 21;12:699623
[PMID:
34366851]
Adv Exp Med Biol. 2010;703:95-104
[PMID:
20711709]
Drug Discov Today. 2019 Aug;24(8):1598-1605
[PMID:
30954685]
J Glaucoma. 2016 May;25(5):459-65
[PMID:
25646715]
FEBS Lett. 1996 Aug 26;392(2):189-93
[PMID:
8772201]
J Clin Med. 2022 Feb 15;11(4):
[PMID:
35207274]
Nat Cell Biol. 2005 Apr;7(4):399-404
[PMID:
15793569]
Curr Drug Targets. 2017;18(4):455-462
[PMID:
27033194]
Biomolecules. 2021 Aug 19;11(8):
[PMID:
34439904]
Front Pharmacol. 2022 May 20;13:875662
[PMID:
35668928]
Invest Ophthalmol Vis Sci. 2001 Jan;42(1):137-44
[PMID:
11133858]
Surv Ophthalmol. 2013 Jul-Aug;58(4):311-20
[PMID:
23768921]
Pharmaceuticals (Basel). 2023 Aug 17;16(8):
[PMID:
37631087]
Curr Med Chem. 2020;27(14):2222-2256
[PMID:
30378487]
Alzheimers Res Ther. 2017 Dec 15;9(1):97
[PMID:
29246246]
Brain. 2008 Jan;131(Pt 1):250-63
[PMID:
18063589]
Cells Tissues Organs. 2018;206(3):119-132
[PMID:
30879015]
Front Aging Neurosci. 2017 Apr 04;9:94
[PMID:
28420986]