Constantin Alin Nicola, Maria Cristina Marinescu, Anne Marie Firan, Mihaela Simona Naidin, Radu Constantin Ciuluvica, Maria Magdalena Rosu, Andreea-Daniela Meca, Maria Bogdan, Adina Turcu-Stiolica
BACKGROUND: Glaucoma is a progressive optic neuropathy, characterised by a complex pathophysiology, with mitochondrial dysfunction playing a significant role in the cellular damage and apoptosis of ganglion cells. Niacin is a precursor to several molecules acting as coenzymes in the mitochondrial production of ATP, in DNA repair and in the reduction of reactive oxygen species. The objective of this systematic review is to assess the impact of daily niacin intake on glaucoma.
METHODS: Case-control and cohort studies regarding niacin and glaucoma, indexed in PubMed, Web of Science, Cochrane and Scopus, were included. Other study methodologies, studies regarding niacin in other ocular disease or other nutrients in glaucoma were excluded. Bias was assessed using the Newcastle-Ottawa Scale. The study protocol was registered in the PROSPERO database (no. CRD42024578889).
RESULTS: Five case-control studies were included. In the pooled analysis, a significantly higher proportion of patients with high niacin consumption was found in the group without glaucoma compared to those with glaucoma as defined by ISGEO criteria (-value < 0.00001; OR = 0.66, 95% CI 0.55-0.79) or as defined by retinal imaging (-value = 0.02; OR = 0.63, 95% CI 0.43-0.94).
CONCLUSIONS: Daily dietary intake of niacin is significantly lower in patients with glaucoma compared to the general population. Given different average daily intakes of niacin in these populations, different glaucoma definitions and several confounding variables which weaken the associations, large sample, standardised randomised controlled trials are needed to confirm the potential benefits of niacin in glaucoma.
J Glaucoma. 2023 Jun 1;32(6):443-450
[PMID:
36946914]
Skin Therapy Lett. 2020 Nov;25(5):7-11
[PMID:
33196157]
Redox Biol. 2021 Jul;43:101988
[PMID:
33932867]
Clin Nutr. 2022 Jun;41(6):1357-1424
[PMID:
35365361]
Life (Basel). 2024 Sep 12;14(9):
[PMID:
39337937]
Br J Ophthalmol. 2002 Feb;86(2):238-42
[PMID:
11815354]
Clin Exp Ophthalmol. 2020 Sep;48(7):903-914
[PMID:
32721104]
Ageing Res Rev. 2018 Jul;44:22-32
[PMID:
29580919]
Nutrients. 2020 Mar 24;12(3):
[PMID:
32214001]
Antioxid Redox Signal. 2019 Jan 10;30(2):251-294
[PMID:
29634344]
Molecules. 2022 May 29;27(11):
[PMID:
35684429]
Mov Disord. 2024 Feb;39(2):360-369
[PMID:
37899683]
Proc Natl Acad Sci U S A. 2020 Dec 29;117(52):33619-33627
[PMID:
33318177]
Signal Transduct Target Ther. 2020 Oct 7;5(1):227
[PMID:
33028824]
Int J Tryptophan Res. 2018 May 21;11:1178646918776658
[PMID:
29844677]
Nutrients. 2018 Mar 22;10(4):
[PMID:
29565276]
Invest Ophthalmol Vis Sci. 2023 Nov 1;64(14):34
[PMID:
38010699]
J Mol Neurosci. 2021 Jul;71(7):1425-1435
[PMID:
33907963]
Invest Ophthalmol Vis Sci. 2019 Jun 3;60(7):2509-2514
[PMID:
31185090]
J Lipid Res. 2019 Apr;60(4):741-746
[PMID:
30782960]
Mol Aspects Med. 2023 Aug;92:101193
[PMID:
37331129]
Acta Neuropathol Commun. 2023 Jan 22;11(1):18
[PMID:
36681854]
BMJ. 2021 Mar 29;372:n71
[PMID:
33782057]
JAMA Ophthalmol. 2022 Jan 01;140(1):11-18
[PMID:
34792559]
Nutrients. 2023 Aug 16;15(16):
[PMID:
37630781]
J Glaucoma. 2017 Dec;26(12):1161-1168
[PMID:
28858158]
Sci Rep. 2024 Apr 12;14(1):8539
[PMID:
38609427]
Int J Mol Sci. 2019 Feb 23;20(4):
[PMID:
30813414]
BMJ Open. 2022 Jan 6;12(1):e053805
[PMID:
34992115]
Nutrients. 2021 Nov 26;13(12):
[PMID:
34959814]
Nutrients. 2024 Aug 21;16(16):
[PMID:
39203931]
Eur J Ophthalmol. 2023 Sep;33(5):1801-1815
[PMID:
36916064]
Med Clin North Am. 2021 May;105(3):493-510
[PMID:
33926643]
Nat Commun. 2023 Nov 28;14(1):7793
[PMID:
38016950]
Perm J. 2022 Jun 29;26(2):89-97
[PMID:
35933667]
Science. 2017 Feb 17;355(6326):756-760
[PMID:
28209901]
JAMA. 2014 May 14;311(18):1901-11
[PMID:
24825645]
Metabolites. 2020 Jan 28;10(2):
[PMID:
32012845]
Curr Issues Mol Biol. 2023 Aug 25;45(9):7097-7109
[PMID:
37754233]
Ophthalmology. 2014 Nov;121(11):2081-90
[PMID:
24974815]