Wenxu Zhang, Shen Li, Shuting Liu, Tian-Tian Wang, Zheng-Hong Luo, Chao Bian, Yin-Ning Zhou
Precision synthesis of polyorganosiloxanes and temporal control over the polymerization process during ring-opening polymerization (ROP) of cyclosiloxanes remain challenging due to the occurrence of side reactions, e.g., intramolecular transfer (backbiting) and intermolecular chain transfer, and irreversible catalyst transformation. In this study, a merocyanine-based photoacid catalyst is developed for cationic ROP of different cyclosiloxanes. A series of well-defined cyclotrisiloxane polymers with predetermined molar masses and low dispersities ( < 1.30) are successfully synthesized under various conditions (i.e., different catalyst loadings, initiator concentrations, solvents, and monomer types). Mechanistic insights by experiments and theoretical calculations suggest that the cationic active species, siloxonium ions, are combined with the catalyst anions to form tight ion pairs, thereby attenuating the reactivity of active species and subsequently minimizing side reactions. An efficient photocatalytic cycle is established among the catalyst, monomer, and polymer chain due to the rapid and reversible isomeric phototransformation of the catalyst, which endows the polymerization process with excellent temporal control. Successful in situ chain extension further confirms the controlled characteristics of photomediated CROP. This as-developed polymerization strategy effectively addresses long-standing challenges in the field of polyorganosiloxane synthesis.
Chem Commun (Camb). 2016 Jun 4;52(44):7126-9
[PMID:
27167862]
Chem Rev. 2020 Mar 11;120(5):2950-3048
[PMID:
32083844]
Angew Chem Int Ed Engl. 2017 Aug 7;56(33):9670-9679
[PMID:
28277625]
Adv Sci (Weinh). 2023 Dec;10(34):e2304506
[PMID:
37814364]
Angew Chem Int Ed Engl. 2022 Jun 7;61(23):e202117377
[PMID:
35128771]
JACS Au. 2020 Dec 09;1(1):79-86
[PMID:
34467271]
Polymers (Basel). 2022 Jun 14;14(12):
[PMID:
35745987]
Molecules. 2023 Jan 29;28(3):
[PMID:
36770964]
Acc Chem Res. 2022 Jul 19;55(14):1960-1971
[PMID:
35771008]
Angew Chem Int Ed Engl. 2022 Dec 5;61(49):e202210851
[PMID:
36114148]
J Am Chem Soc. 2011 Sep 21;133(37):14699-703
[PMID:
21823603]
Angew Chem Int Ed Engl. 2022 May 9;61(20):e202202660
[PMID:
35254726]
Science. 2023 Sep;381(6661):1011-1014
[PMID:
37651508]
J Am Chem Soc. 2018 May 2;140(17):5686-5690
[PMID:
29672028]
Chem Soc Rev. 2016 Nov 7;45(22):6165-6212
[PMID:
27819094]
Nat Commun. 2019 Aug 13;10(1):3641
[PMID:
31409782]
Chem Sci. 2018 Feb 19;9(11):2879-2891
[PMID:
29732072]
Chem Rev. 2016 Sep 14;116(17):10212-75
[PMID:
26745441]
J Am Chem Soc. 2022 Nov 2;144(43):19942-19952
[PMID:
36266241]
Angew Chem Int Ed Engl. 2019 Jul 29;58(31):10410-10422
[PMID:
30575230]