Extended Sampling of Macromolecular Conformations from Uniformly Distributed Points on Multidimensional Normal Mode Hyperspheres.

Antoniel A S Gomes, Mauricio G S Costa, Maxime Louet, Nicolas Floquet, Paulo M Bisch, David Perahia
Author Information
  1. Antoniel A S Gomes: Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil. ORCID
  2. Mauricio G S Costa: Programa de Computação Científica, Vice-Presidência de Educação Informação e Comunicação, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil. ORCID
  3. Maxime Louet: Institut des Biomolecules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier Cedex 05 34095, France.
  4. Nicolas Floquet: Institut des Biomolecules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier Cedex 05 34095, France.
  5. Paulo M Bisch: Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
  6. David Perahia: Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR 8113, CNRS, École Normale Supérieure Paris-Saclay, Gif-sur-Yvette 91190, France.

Abstract

Proteins are dynamic entities that adopt diverse conformations, which play a pivotal role in their function. Understanding these conformations is essential, and protein collective motions, particularly those captured by normal mode (NM) and their linear combinations, provide a robust means for conformational sampling. This work introduces a novel approach to obtaining a uniformly oriented set of a given number of lowest frequency NM combined vectors and generating harmonically equidistant restrained structures along them. They are all thus uniformly located on concentric hyperspheres, systematically covering the defined NM space fully. The generated structures are further relaxed with standard molecular dynamics (MD) simulations to explore the conformational space. The efficiency of the approach we termed "distributed points Molecular Dynamics using Normal Modes" (dpMDNM) was assessed by applying it to hen egg-white lysozyme and human cytochrome P450 3A4 (CYP3A4). To this purpose, we compared our new approach with other methods and analyzed the sampling of existing experimental structures. Our results demonstrate the efficacy of dpMDNM in extensive conformational sampling, particularly as more NMs are considered. Ensembles generated by dpMDNM exhibited a broad coverage of the experimental structures, providing valuable insights into the functional aspects of lysozyme and CYP3A4. Furthermore, dpMDNM also covered lysozyme structures with relatively elevated energies corresponding to transient states not easily obtained by standard MD simulations, in conformity with nuclear magnetic resonance structural indications. This method offers an efficient and rational framework for comprehensive protein conformational sampling, contributing significantly to our understanding of protein dynamics and function.

References

J Chem Inf Model. 2023 Apr 24;63(8):2554-2572 [PMID: 36972178]
Proc Natl Acad Sci U S A. 1983 Nov;80(21):6571-5 [PMID: 6579545]
Protein Eng. 2001 Jan;14(1):1-6 [PMID: 11287673]
J Chem Theory Comput. 2023 Sep 12;19(17):5649-5670 [PMID: 37585703]
J Comput Chem. 2014 Feb 15;35(5):406-13 [PMID: 24302199]
Curr Opin Struct Biol. 2020 Oct;64:34-41 [PMID: 32622329]
Eur Biophys J. 2010 Aug;39(9):1365-72 [PMID: 20237920]
Biophys J. 2016 Apr 12;110(7):1485-1498 [PMID: 27074675]
Biophys J. 2001 Jan;80(1):505-15 [PMID: 11159421]
Curr Opin Struct Biol. 2018 Oct;52:8-15 [PMID: 30015202]
Curr Opin Biotechnol. 2011 Dec;22(6):809-17 [PMID: 21411308]
FEBS Lett. 2006 Oct 2;580(22):5130-6 [PMID: 16962102]
J Biol Chem. 2018 Mar 16;293(11):4037-4046 [PMID: 29382727]
Biochemistry. 2013 Sep 17;52(37):6480-6 [PMID: 23941501]
J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [PMID: 8744570]
Nat Commun. 2018 Nov 26;9(1):4983 [PMID: 30478320]
J Biol Chem. 2006 Apr 7;281(14):9127-36 [PMID: 16467307]
Nature. 2007 Dec 13;450(7172):964-72 [PMID: 18075575]
J Biol Chem. 1992 Jan 5;267(1):83-90 [PMID: 1730627]
Science. 2021 Aug 20;373(6557):871-876 [PMID: 34282049]
Fold Des. 1997;2(3):173-81 [PMID: 9218955]
J Biol Chem. 2021 Aug;297(2):100969 [PMID: 34273352]
Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10390-5 [PMID: 18641126]
J Struct Biol. 2011 Mar;173(3):451-60 [PMID: 20850542]
Sci Rep. 2020 May 21;10(1):8392 [PMID: 32439887]
Bioinformatics. 2021 Nov 5;37(21):3956-3958 [PMID: 34240100]
Protein Sci. 2001 Apr;10(4):677-88 [PMID: 11274458]
Nat Commun. 2015 Apr 02;6:6772 [PMID: 25832715]
Elife. 2015 Jan 09;4: [PMID: 25575179]
J Chem Inf Model. 2020 May 26;60(5):2419-2423 [PMID: 31944765]
Sci Adv. 2016 Oct 14;2(10):e1600886 [PMID: 27757419]
Neuron. 2018 Sep 19;99(6):1129-1143 [PMID: 30236283]
Biophys Chem. 2011 Dec;159(2-3):257-66 [PMID: 21807453]
J Chem Phys. 2020 Jul 28;153(4):044130 [PMID: 32752662]
Protein Sci. 2015 Sep;24(9):1495-507 [PMID: 26130403]
Acta Crystallogr D Biol Crystallogr. 2015 Apr;71(Pt 4):742-53 [PMID: 25849385]
Acta Crystallogr D Biol Crystallogr. 2004 Apr;60(Pt 4):796-9 [PMID: 15039589]
Biochim Biophys Acta Proteins Proteom. 2018 Jan;1866(1):141-154 [PMID: 28502748]
Mol Cell Endocrinol. 2019 Aug 1;493:110469 [PMID: 31163201]
Nat Commun. 2016 Aug 31;7:12575 [PMID: 27578633]
Curr Opin Biotechnol. 2021 Jun;69:35-42 [PMID: 33360373]
Nature. 2024 Jun;630(8016):493-500 [PMID: 38718835]
Cell Mol Life Sci. 2003 Jan;60(1):176-84 [PMID: 12613666]
J Comput Chem. 2009 Jul 30;30(10):1545-614 [PMID: 19444816]
Phys Rev Lett. 1996 Aug 26;77(9):1905-1908 [PMID: 10063201]
Chem Rev. 2021 Dec 8;121(23):14594-14648 [PMID: 34652893]
Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3603-8 [PMID: 17360689]
J Chem Inf Model. 2020 May 26;60(5):2605-2613 [PMID: 32202786]
Eur Biophys J. 2018 Jul;47(5):583-590 [PMID: 29546436]
J Mol Model. 2016 Dec;22(12):286 [PMID: 27817112]
Bioinformatics. 2015 May 1;31(9):1478-80 [PMID: 25505095]
Chem Res Toxicol. 2015 Jan 20;28(1):38-42 [PMID: 25485457]
Proteins. 2000 Oct 1;41(1):1-7 [PMID: 10944387]
J Mol Biol. 2005 Jul 15;350(3):528-42 [PMID: 15922356]
iScience. 2022 Apr 18;25(5):104264 [PMID: 35521518]
Sci Rep. 2020 Oct 1;10(1):16252 [PMID: 33004851]
Chem Rev. 2010 Mar 10;110(3):1463-97 [PMID: 19785456]
J Phys Chem B. 2013 Oct 3;117(39):11556-64 [PMID: 23987570]
Proc Natl Acad Sci U S A. 1985 Aug;82(15):4995-9 [PMID: 3860838]
J Mol Biol. 2022 Apr 15;434(7):167483 [PMID: 35150654]
Nat Rev Genet. 2021 Feb;22(2):71-88 [PMID: 33168968]
Biophys J. 1992 Feb;61(2):410-27 [PMID: 1547329]
J Chem Inf Model. 2022 Sep 26;62(18):4561-4568 [PMID: 36099639]
J Mol Biol. 1996 May 3;258(2):393-410 [PMID: 8627633]
Bioinformatics. 2019 Sep 15;35(18):3505-3507 [PMID: 30838394]
Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13682-7 [PMID: 16954191]
J Biol Chem. 2012 Feb 24;287(9):6797-809 [PMID: 22194603]
J Chem Theory Comput. 2022 Apr 12;18(4):2062-2074 [PMID: 35325529]
PLoS Comput Biol. 2018 Sep 18;14(9):e1006456 [PMID: 30226840]
Sci Adv. 2022 Sep 23;8(38):eabq8489 [PMID: 36149965]
Biophys J. 2018 Apr 10;114(7):1604-1613 [PMID: 29642030]
Mol Inform. 2017 Oct;36(10): [PMID: 28685969]
J Phys Chem B. 2019 Feb 14;123(6):1294-1301 [PMID: 30665293]
Comput Chem. 1995 Sep;19(3):241-6 [PMID: 7551557]
Nature. 2010 Jan 28;463(7280):485-92 [PMID: 20110992]
Biochemistry. 2005 Nov 22;44(46):15139-49 [PMID: 16285717]
Proteins. 1999 Jan 1;34(1):96-112 [PMID: 10336386]
Nucleic Acids Res. 2018 Jul 2;46(W1):W296-W303 [PMID: 29788355]
J Biol Chem. 2004 Sep 10;279(37):38091-4 [PMID: 15258162]
Biophys J. 2013 Oct 1;105(7):1643-52 [PMID: 24094405]
Arch Toxicol. 2020 Nov;94(11):3671-3722 [PMID: 33111191]
Nature. 1958 Mar 8;181(4610):662-6 [PMID: 13517261]
Nucleic Acids Res. 2012 Jan;40(Database issue):D370-6 [PMID: 21890895]
Antioxid Redox Signal. 2010 Oct;13(8):1273-96 [PMID: 20446763]
J Mol Biol. 2009 Jan 16;385(2):653-64 [PMID: 18976669]
Nature. 1992 Jul 23;358(6384):302-7 [PMID: 1641003]
Phys Chem Chem Phys. 2016 Feb 17;18(8):5707-19 [PMID: 26611321]
Int J Mol Sci. 2019 Feb 25;20(4): [PMID: 30823507]
Nature. 1965 May 22;206(4986):757-61 [PMID: 5891407]
Genome Biol. 2000;1(6):REVIEWS3003 [PMID: 11178272]
Science. 2018 Jul 27;361(6400):355-360 [PMID: 30049874]
Biophys J. 2002 Jul;83(1):22-41 [PMID: 12080098]
Biophys J. 2015 Sep 15;109(6):1179-89 [PMID: 26255588]
Nat Methods. 2017 Jan;14(1):71-73 [PMID: 27819658]
Biochim Biophys Acta. 2007 Mar;1770(3):314-29 [PMID: 17239540]
J Chem Theory Comput. 2011 Feb 8;7(2):525-37 [PMID: 26596171]
Front Mol Biosci. 2022 Feb 04;9:832847 [PMID: 35187088]
Mol Cell Endocrinol. 2019 Mar 15;484:69-77 [PMID: 30690069]
J Chem Theory Comput. 2017 May 9;13(5):2123-2134 [PMID: 28379696]
J Chem Theory Comput. 2023 Jan 9;: [PMID: 36622950]
J Am Chem Soc. 2013 Jun 12;135(23):8542-51 [PMID: 23697766]
Curr Opin Struct Biol. 2020 Aug;63:34-41 [PMID: 32334344]
J Mol Biol. 2002 Jul 26;320(5):1011-24 [PMID: 12126621]
J Chem Theory Comput. 2015 Jun 9;11(6):2755-67 [PMID: 26575568]

MeSH Term

Muramidase
Molecular Dynamics Simulation
Cytochrome P-450 CYP3A
Humans
Protein Conformation
Animals
Macromolecular Substances
Chickens

Chemicals

Muramidase
Cytochrome P-450 CYP3A
hen egg lysozyme
CYP3A4 protein, human
Macromolecular Substances

Word Cloud

Similar Articles

Cited By