Debela DT, Muzazu SG, Heraro KD, Ndalama MT, Mesele BW, Haile DC, Kitui SK, Manyazewal T (2021) New approaches and procedures for cancer treatment: current perspectives. SAGE Open Med 9:20503121211034370. https://doi.org/10.1177/20503121211034366
[DOI:
10.1177/20503121211034366]
https://www.who.int/news-room/fact-sheets/detail/cancer .
Peng G, Hakim M, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, Tisch U, Haick (2010) Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br J Cancer 103(4):542–551. https://doi.org/10.1038/sj.bjc.6605810
[DOI:
10.1038/sj.bjc.6605810]
Brown JS, Amend SR, Austin RH, Gatenby RA, Hammarlund EU, Pienta KJ (2023) Updating the definition of cancer. Mol Cancer Res 21(11):1142–1147. https://doi.org/10.1158/1541-7786.MCR-23-0411
[DOI:
10.1158/1541-7786.MCR-23-0411]
Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y (2020) Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther 5(1):28. https://doi.org/10.1038/s41392-020-0134-x
[DOI:
10.1038/s41392-020-0134-x]
Lopes-Coelho F, Martins F, Pereira SA, Serpa J (2021) Anti-angiogenic therapy: current challenges and future perspectives. Int J Mol Sci 22(7):3765. https://doi.org/10.3390/ijms22073765
[DOI:
10.3390/ijms22073765]
Tilsed CM, Fisher SA, Nowak AK, Lake RA, Lesterhuis WJ (2022) Cancer chemotherapy: insights into cellular and tumor microenvironmental mechanisms of action. Front Oncol 12:960317. https://doi.org/10.3389/fonc.2022.960317
[DOI:
10.3389/fonc.2022.960317]
Uttpal A, Abhijit D, Arvind K, Singh C, Rupa S, Amarnath M, Devendra KP, Valentina D, Arun U, Ramesh K, Anupama C, Jaspreet KD, Saikat D, Jayalakshmi V, José MPL (2023) Cancer chemotherapy and beyond: current status, drug candidates, associated risks and progress in targeted therapeutics. Genes & Diseases 10(4):1367–1401. https://doi.org/10.1016/j.gendis.2022.02.007
[DOI:
10.1016/j.gendis.2022.02.007]
Jampilek J (2019) Heterocycles in medicinal chemistry. Molecules 24:3839. https://doi.org/10.3390/molecules24213839
[DOI:
10.3390/molecules24213839]
Solomon VR, Lee H (2011) Quinoline as a privileged scaffold in cancer drug discovery. Curr Med Chem 18(10):1488–1508. https://doi.org/10.2174/092986711795328382
[DOI:
10.2174/092986711795328382]
Ilakiyalakshmi M, Napoleon AA (2022) Review on recent development of quinoline for anticancer activities. Arab J Chem 15:104168. https://doi.org/10.1016/j.arabjc.2022.104168
[DOI:
10.1016/j.arabjc.2022.104168]
Gao F, Zhang X, Wang T, Xiao J (2019) Quinolone hybrids and their anti-cancer activities: an overview. Eur J Med 165:59–79. https://doi.org/10.1016/j.ejmech.2019.01.017
[DOI:
10.1016/j.ejmech.2019.01.017]
Bergh JC, Tötterman TH, Termander BC, Strandgarden KA, Gunnarsson PO, Nilsson BI (1997) The first clinical pilot study of roquinimex (Linomide) in cancer patients with special focus on immunological effects. Cancer Invest 15:204–211. https://doi.org/10.3109/07357909709039716
[DOI:
10.3109/07357909709039716]
Amrutha PG, Sonyanaik B, Banothu J (2024) Neuroimmunomodulatory properties of laquinimod. J Brain Disord 13:100119. https://doi.org/10.1016/j.dscb.2024.100119
[DOI:
10.1016/j.dscb.2024.100119]
Isaacs JT (2010) The long and winding road for the development of tasquinimod as an oral second-generation quinoline-3-carboxamide antiangiogenic drug for the treatment of prostate cancer. Expert Opin Investig Drugs 19(10):1235–1243. https://doi.org/10.1517/13543784.2010.514262
[DOI:
10.1517/13543784.2010.514262]
Gupta N, Al Ustwani O, Shen L, Pili R (2014) Mechanism of action and clinical activity of tasquinimod in castrate-resistant prostate cancer. Onco Targets Ther 7:223–234. https://doi.org/10.2147/OTT.S53524
[DOI:
10.2147/OTT.S53524]
Yakkala PA, Penumallu NR, Shafi S, Kamal A (2023) Prospects of topoisomerase inhibitors as promising anti-cancer agents. Pharmaceuticals 16:1456. https://doi.org/10.3390/ph16101456
[DOI:
10.3390/ph16101456]
McKie SJ, Neuman KC, Maxwell A (2021) DNA topoisomerases: advances in understanding of cellular roles and multi-protein complexes via structure-function analysis. BioEssays 43(4):e2000286. https://doi.org/10.1002/bies.202000286
[DOI:
10.1002/bies.202000286]
Nitiss JL (2009) DNA topoisomerase II and its growing repertoire of biological functions. Nat Rev Cancer 9(5):327–337. https://doi.org/10.1038/nrc2608
[DOI:
10.1038/nrc2608]
Delgado JL, Hsieh CM, Chan NL, Hiasa H (2018) Topoisomerases as anticancer targets. Biochem J 475(2):373–398. https://doi.org/10.1042/bcj20160583
[DOI:
10.1042/bcj20160583]
Deady LW, Kaye AJ, Finlay GJ, Baguley BC, Denny WA (1997) Synthesis and antitumor properties of N-[2-(dimethylamino) ethyl]carboxamide derivatives of fused tetracyclic quinolines and quinoxalines: a new class of putative topoisomerase inhibitors. J Med Chem 40(13):2040–2046. https://doi.org/10.1021/jm970044r
[DOI:
10.1021/jm970044r]
Deady LW, Desneves J, Kaye AJ, Thompson M, Finlay GJ, Baguley BC, Denny WA (1999) Ring-substituted 11-oxo-11H-indeno[1,2-b]quinoline-6-carboxamides with similar patterns of cytotoxicity to the dual topo I/II inhibitor DACA. Bioorg Med Chem 7:2801–2809. https://doi.org/10.1016/s0968-0896(99)00231-x
[DOI:
10.1016/s0968-0896(99)00231-x]
Deady LW, Desneves J, Kaye AJ, Finlay GJ, Baguley BC, Denny WA (2000) Synthesis and antitumor activity of some indeno[1,2-b]quinoline-based bis carboxamides. Bioorg Med Chem 8:977–984. https://doi.org/10.1016/s0968-0896(00)00039-0
[DOI:
10.1016/s0968-0896(00)00039-0]
Deady LW, Desneves J, Kaye AJ, Finlay GJ, Baguley BC, Denny WA (2001) Positioning of the carboxamide side chain in 11-Oxo-11H-indeno[1,2-b]quinolinecarboxamide anticancer agents: effects on cytotoxicity. Bioorg Med Chem 9:445–452. https://doi.org/10.1016/s0968-0896(00)00264-9
[DOI:
10.1016/s0968-0896(00)00264-9]
Soni JP, Devi P, Chemitikanti S, Sharma A, Swamy CVD, Phanindranath R, Sathish M, Nagesh N, Godugu C, Shankaraiah N (2023) Design, synthesis and in vitro cytotoxic evaluation of β-carboline tethered quinoline-4-carboxamide conjugates as DNA-interactive topo II inhibitors. J Mol Struct 1291:136001. https://doi.org/10.1016/j.molstruc.2023.136001
[DOI:
10.1016/j.molstruc.2023.136001]
Cipak L (2022) Protein kinases: function, substrates, and implication in diseases. Int J Mol Sci 23:3560. https://doi.org/10.3390/ijms23073560
[DOI:
10.3390/ijms23073560]
Cicenas J, Raciene A (2021) Anti-cancer drugs targeting protein kinases approved by FDA in 2020. Cancers (Basel) 13(5):947. https://doi.org/10.3390/cancers13050947
[DOI:
10.3390/cancers13050947]
Bhullar KS, Lagaron NO, McGowan EM, Parmar I, Jha A, Hubbard BP, Rupasinghe HPV (2018) Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer 17:48. https://doi.org/10.1186/s12943-018-0804-2
[DOI:
10.1186/s12943-018-0804-2]
Li J, Gong C, Zhou H, Liu J, Xia X, Ha W, Jiang Y, Liu Q, Xiong H (2024) Kinase inhibitors and kinase-targeted cancer therapies: recent advances and future perspectives. Int J Mol Sci 25(10):5489. https://doi.org/10.3390/ijms25105489
[DOI:
10.3390/ijms25105489]
Sabbah DA, Hajjo R, Sweidan K (2020) Review on epidermal growth factor receptor (EGFR) structure signaling pathways interactions and recent updates of EGFR inhibitors. Curr Top Med Chem 20:815–834. https://doi.org/10.2174/1568026620666200303123102
[DOI:
10.2174/1568026620666200303123102]
Wee P, Wang Z (2017) Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel) 9:52. https://doi.org/10.3390/cancers9050052
[DOI:
10.3390/cancers9050052]
Zubair T, Bandyopadhyay D (2023) Small molecule EGFR inhibitors as anti-cancer agents: discovery, mechanisms of action, and opportunities. Int J Mol Sci 24:2651. https://doi.org/10.3390/ijms24032651
[DOI:
10.3390/ijms24032651]
Ibrahim D, Abou el ella DA, El-Motwally AM, Aly RM (2015) Molecular design and synthesis of certain new quinoline derivatives having potential anticancer activity. Eur J Med 102:115–131. https://doi.org/10.1016/j.ejmech.2015.07.030
[DOI:
10.1016/j.ejmech.2015.07.030]
Aly RM, Serya RAT, El-Motwally AM, Esmat A, Abbas S, Abou El Ella DA (2017) Novel quinoline-3-carboxamides (Part 2): design, optimization and synthesis of quinoline based scaffold as EGFR inhibitors with potent anticancer activity. Bioorg Chem 75:368–392. https://doi.org/10.1016/j.bioorg.2017.10.018
[DOI:
10.1016/j.bioorg.2017.10.018]
Chen PH, Chen X, He X (2013) Platelet-derived growth factors and their receptors: structural and functional perspectives. Biochim Biophys Acta 1834:2176–2186. https://doi.org/10.1016/j.bbapap.2012.10.015
[DOI:
10.1016/j.bbapap.2012.10.015]
Pandey P, Khan F, Upadhyay TK, Seungjoon M, Park MN, Kim B (2023) New insights about the PDGF/PDGFR signaling pathway as a promising target to develop cancer therapeutic strategies. Biomed Pharmacother 161:114491. https://doi.org/10.1016/j.biopha.2023.114491
[DOI:
10.1016/j.biopha.2023.114491]
Mhaske GS, Sen AK, Shah A, Sen DB, Jadhav SA, Khiste R (2022) Synthesis characterization and in vitro anticancer evaluation of novel quinoline carboxamide derivatives as inhibitors of PDGFR. NeuroQuantology 20(8):7967–7980. https://doi.org/10.14704/nq.2022.20.8.NQ44823
[DOI:
10.14704/nq.2022.20.8.NQ44823]
Thrasher P, Singh M, Singh K (2017) Ataxia-telangiectasia mutated kinase: role in myocardial remodeling. J Rare Dis Res Treat 2:32–37.
[DOI:
10.29245/2572-9411/2017/1.1077]
Ueno S, Sudo T, Hirasawa A (2022) ATM: functions of ATM kinase and its relevance to hereditary tumors. Int J Mol Sci 3:523. https://doi.org/10.3390/ijms23010523
[DOI:
10.3390/ijms23010523]
Lodovichi S, Cervelli T, Pellicioli A, Galli A (2020) Inhibition of DNA repair in cancer therapy: toward a multi-target approach. Int J Mol Sci 21(18):6684. https://doi.org/10.3390/ijms21186684
[DOI:
10.3390/ijms21186684]
Ravi S, Barui S, Kirubakaran S, Duhan P, Bhowmik K (2020) Synthesis and characterization of quinoline-3-carboxamide derivatives as inhibitors of the ATM kinase. Curr Top Med Chem 20:2070–2079. https://doi.org/10.2174/1568026620666200731174216
[DOI:
10.2174/1568026620666200731174216]
Sola AM, Johnson DE, Grandis JR (2019) Investigational multitargeted kinase inhibitors in development for head and neck neoplasms. Expert Opin Investig Drugs 28:351–363. https://doi.org/10.1080/13543784.2019.1581172
[DOI:
10.1080/13543784.2019.1581172]
Lee J, Jung H, Kim M, Lee E, Im D, Aman W, Hah JM (2018) Discovery of novel 4-aryl-thieno[1,4]diazepin-2-one derivatives targeting multiple protein kinases as anticancer agents. Bioorg Med Chem 26:1628–1637. https://doi.org/10.1016/j.bmc.2018.02.009
[DOI:
10.1016/j.bmc.2018.02.009]
Zhou Y, Tao L, Zhou X, Zuo Z, Gong J, Liu X, Zhou Y, Liu C, Sang N, Liu H, Zou J, Gou K, Yang X, Zhao Y (2021) DHODH and cancer: promising prospects to be explored. Cancer Metab 9:22. https://doi.org/10.1186/s40170-021-00250-z
[DOI:
10.1186/s40170-021-00250-z]
Wang W, Cui J, Ma H, Lu W, Huang J (2021) Targeting Pyrimidine Metabolism in the Era of Precision Cancer Medicine. Front Oncol 11:684961. https://doi.org/10.3389/fonc.2021.684961
[DOI:
10.3389/fonc.2021.684961]
Mahapatra A, Prasad T, Sharma T (2021) Pyrimidine: a review on anticancer activity with key emphasis on SAR. Futur J Pharm Sci 7:123. https://doi.org/10.1186/s43094-021-00274-8
Vyas VK, Variya B, Ghate MD (2014) Design, synthesis and pharmacological evaluation of novel substituted quinoline-2-carboxamide derivatives as human dihydroorotate dehydrogenase (hDHODH) inhibitors and anticancer agents. Eur J Med 82:385–393. https://doi.org/10.1016/j.ejmech.2014.05.064
[DOI:
10.1016/j.ejmech.2014.05.064]
Shinde KW, Kharkar PS, Shah CP, Rathod SV (2021) Synthesis, molecular docking, and biological evaluation of novel 2-(3-chlorophenyl) quinoline-4-carboxamide derivatives as potent anti-breast cancer and antibacterial agents. TJPS 45:41–49.
Forezi Lda S, Tolentino NM, de Souza AM, Castro HC, Montenegro RC, Dantas RF, Oliveira ME, Silva FP Jr, Barreto LH, Burbano RM, Abrahim-Vieira B, de Oliveira R, Ferreira VF, Cunha AC, Boechat Fda C, de Souza MC (2014) Synthesis, cytotoxicity and mechanistic evaluation of 4-oxoquinoline-3-carboxamide derivatives: finding new potential anticancer drugs. Molecules 19(5):6651–6670. https://doi.org/10.3390/molecules19056651
[DOI:
10.3390/molecules19056651]
Yen TT, Thao DT, Thuoc TL (2014) An overview on keratinocyte growth factor: from the molecular properties to clinical applications. Protein Pept Lett 21(3):306–317. https://doi.org/10.2174/09298665113206660115
[DOI:
10.2174/09298665113206660115]
Zang XP, Lerner MR, Dunn ST, Brackett DJ, Pento JT (2003) Antisense KGFR oligonucleotide inhibition of KGF-induced motility in breast cancer cells. Anticancer Res 23(6C):4913–4919.
[PMID:
14981945]
Mehta M, Kesinger JW, Zang XP, Lerner ML, Brackett DJ, Brueggemeier RW, Li PK, Pento JT (2010) Influence of novel KGFR tyrosine kinase inhibitors on KGF-mediated proliferation of breast cancer. Anticancer Res 30:4883–4889.
[PMID:
21187466]
Pathuri G, Li Q, Mohammed A, Gali H, Pento JT, Rao CV (2014) Synthesis and in vivo evaluation of N-ethylamino-2-oxo-1,2-dihydro-quinoline-3-carboxamide for inhibition of intestinal tumorigenesis in APCMin/+ mice. Bioorg Med Chem Lett 24:1380–1382. https://doi.org/10.1016/j.bmcl.2014.01.042
[DOI:
10.1016/j.bmcl.2014.01.042]
Jean S, Kiger AA (2014) Classes of phosphoinositide 3-kinases at a glance. J Cell Sci 127:923–928. https://doi.org/10.1242/jcs.093773
[DOI:
10.1242/jcs.093773]
Sabbah DA, Simms NA, Wang W, Dong Y, Ezell EL, Brattain MG, Vennerstrom JL, Zhong HA (2012) N-Phenyl-4-hydroxy-2-quinolone-3-carboxamides as selective inhibitors of mutant H1047R phosphoinositide-3-kinase (PI3Kα). Bioorg Med Chem 20:7175–7183. https://doi.org/10.1016/j.bmc.2012.09.059
[DOI:
10.1016/j.bmc.2012.09.059]
Sabbah DA, Haroon RA, Bardaweel SK, Hajjo R, Sweidan K (2020) N-phenyl-6-chloro-4-hydroxy-2-quinolone-3-carboxamides: molecular docking, synthesis, and biological investigation as anticancer agents. Molecules 26:73. https://doi.org/10.3390/molecules26010073
[DOI:
10.3390/molecules26010073]
Sabbah DA, Hishmah B, Sweidan K, Bardaweel S, AlDamen M, Zhong HA, Abu Khalaf R, Hasan Ibrahim A, Al-Qirim T, Abu Sheikha G, Mubarak MS (2018) Structure-based design: synthesis, X-ray crystallography, and biological evaluation of N-substituted-4-hydroxy-2-quinolone-3-carboxamides as potential cytotoxic agents. Anticancer Agents Med Chem 18(2):263–276. https://doi.org/10.2174/1871520617666170911171152
[DOI:
10.2174/1871520617666170911171152]
An D, Peigneur S, Hendrickx LA, Tytgat J (2020) Targeting cannabinoid receptors: current status and prospects of natural products. Int J Mol Sci 21:5064. https://doi.org/10.3390/ijms21145064
[DOI:
10.3390/ijms21145064]
Kendall DA, Yudowski GA (2017) Cannabinoid receptors in the central nervous system: their signaling and roles in disease. Front Cell Neurosci 10:294. https://doi.org/10.3389/fncel.2016.00294
[DOI:
10.3389/fncel.2016.00294]
Dhopeshwarkar A, Mackie K (2014) CB2 Cannabinoid receptors as a therapeutic target-what does the future hold? Mol Pharmacol 86(4):430–437. https://doi.org/10.1124/mol.114.094649
[DOI:
10.1124/mol.114.094649]
Manera C, Malfitano AM, Parkkari T, Lucchesi V, Carpi S, Fogli S, Bertini S, Laezza C, Ligresti A, Saccomanni G, Savinainen JR, Ciaglia E, Pisanti S, Gazzerro P, Di Marzo V, Nieri P, Macchia M, Bifulco M (2015) New quinolone-and 1,8-naphthyridine-3-carboxamides as selective CB2 receptor agonists with anticancer and immuno-modulatory activity. Eur J Med Chem 97:10–18. https://doi.org/10.1016/j.ejmech.2015.04.034
[DOI:
10.1016/j.ejmech.2015.04.034]
Matiadis D, Stefanou V, Athanasellis G, Hamilakis S, McKee V, Igglessi-Markopoulou O, Markopoulos J (2013) Synthesis, X-ray crystallographic study, and biological evaluation of coumarin and quinolinone carboxamides as anticancer agents. Monatsh Chem 144:1063–1069. https://doi.org/10.1007/s00706-013-0986-7
[DOI:
10.1007/s00706-013-0986-7]