The Sirt1/FOXO signal pathway involves in regulating osteomyelitis progression via modulating mitochondrial dysfunctions and osteogenic differentiation.

Runyao Zhang, Nannan Kou, Feifei Liu, Huan Tong, Shaobo Li, Lirong Ren
Author Information
  1. Runyao Zhang: Department of Orthopedics, Guiqian International Hospital, No. 1 Dongfeng Avenue, Wudang District, Guiyang City, Guizhou Province, People's Republic of China.
  2. Nannan Kou: Department of Traumatology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue. Wuhua District, Kunming City, Yunnan Province, People's Republic of China.
  3. Feifei Liu: Department of Spine Surgery, The First Affiliated Hospital of Dali University, No. 32, Jiashibo Avenue, Dali, Yunnan Province, People's Republic of China.
  4. Huan Tong: Department of Spine Surgery, The First Affiliated Hospital of Dali University, No. 32, Jiashibo Avenue, Dali, Yunnan Province, People's Republic of China.
  5. Shaobo Li: Department of Spine Surgery, The First Affiliated Hospital of Dali University, No. 32, Jiashibo Avenue, Dali, Yunnan Province, People's Republic of China.
  6. Lirong Ren: Department of Spine Surgery, The First Affiliated Hospital of Dali University, No. 32, Jiashibo Avenue, Dali, Yunnan Province, People's Republic of China. rlr306045105@163.com.

Abstract

The Sirtuin-1 (Sirt1) gene has been reported to be closely associated with the progression of multiple diseases, but its role in regulating osteomyelitis (OM) pathogenesis has not been explored. The murine long bone-derived osteocyte-like MLO-Y4 cells and osteoblast-like MC3T3-E1 cells were exposed to Staphylococcal protein A (SpA) treatment to establish the in vitro OM models. The expression levels of Osteoblast-specific genes (OCN, OPN and RUNX2), osteoclastic genes (CTSK, MMP9 and ACP5) and the FOXO pathway-related proteins (FOXO1, p-FOXO1, FOXO3 and p-FOXO3) were detected by performing Real-Time qPCR and Western Blot analysis. Osteoblastic differentiation of the cells were evaluated by using the alizarin red S staining assay and TRAP staining assay, and membrane potential and superoxide production were measured to evaluate the mitochondrial functions of the cells. SpA treatment significantly suppressed osteogenic differentiation and induced mitochondrial dysfunction in MLO-Y4 and MC3T3-E1 cells, and promoting osteoclastogenesis in RAW264.7 cells, suggesting that the in vitro OM models were successfully established. Of note, SpA decreased the expression levels of Sirt1 in the OM cells, and SpA-induced detrimental effects on the OM cells were all reversed by overexpressing Sirt1. Mechanistically, Sirt1-overexpression increased the levels of phosphorylated FOXO-related proteins (p-FOXO1 and p-FOXO3) to activate the FOXO signal pathway and ameliorated OM progression in SpA-treated cells. Collectively, it was revealed in the present study that overexpression of Sirt1 activated the FOXO signal pathway to ameliorate SpA-induced detrimental effects in the OM cells, and Sirt1 could be potentially used as therapeutic agent for OM in clinic.

Keywords

References

Abate M, Festa A, Falco M, Lombardi A, Luce A, Grimaldi A et al (2020) Mitochondria as playmakers of apoptosis, autophagy and senescence. Semin Cell Dev Biol 98:139–153. https://doi.org/10.1016/j.semcdb.2019.05.022 [DOI: 10.1016/j.semcdb.2019.05.022]
Akyer SP, Karagur ER, Ata MT, Toprak EK, Donmez AC, Donmez BO (2023) Verbascoside inhibits/repairs the damage of LPS-induced inflammation by regulating apoptosis, oxidative stress, and bone remodeling. Curr Issues Mol Biol 45:8755–8766. https://doi.org/10.3390/cimb45110550 [DOI: 10.3390/cimb45110550]
Bartell SM, Kim HN, Ambrogini E, Han L, Iyer S, Ucer SS et al (2014) FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating HO accumulation. Nat Commun. https://doi.org/10.1038/ncomms4773 [DOI: 10.1038/ncomms4773]
Bravo Vázquez LA, Moreno Becerril MY, Mora Hernández EO, León Carmona GG, Aguirre Padilla ME, Chakraborty S, Bandyopadhyay APS (2021) The emerging role of MicroRNAs in bone diseases and their therapeutic potential. Molecules 27:211. https://doi.org/10.1007/978-981-16-1757-7_16 [DOI: 10.1007/978-981-16-1757-7_16]
Bury DC, Rogers TSDM (2021) Osteomyelitis: diagnosis and treatment. Am Fam Physicia 104:395–402. https://doi.org/10.2307/j.ctv22jnnd6.7 [DOI: 10.2307/j.ctv22jnnd6.7]
Chen H, Hu X, Yang R, Wu G, Tan Q, Goltzman D et al (2020) SIRT1/FOXO3a axis plays an important role in the prevention of mandibular bone loss induced by 1,25(OH)2D deficiency. Int J Biol Sci 16:2712–2726. https://doi.org/10.7150/ijbs.48169 [DOI: 10.7150/ijbs.48169]
Chen Y, Zhou F, Liu H, Li J, Che H, Shen J et al (2021) SIRT1, a promising regulator of bone homeostasis. Life Sci 269:119041. https://doi.org/10.1016/j.lfs.2021.119041 [DOI: 10.1016/j.lfs.2021.119041]
Chen Y, Liu Z, Lin Z, Lu M, Fu Y, Liu G et al (2023) The effect of Staphylococcus aureus on innate and adaptive immunity and potential immunotherapy for S. aureus-induced osteomyelitis. Front Immunol 14:1–12. https://doi.org/10.3389/fimmu.2023.1219895 [DOI: 10.3389/fimmu.2023.1219895]
Chen Z, Liu B, Zhou D, Lei M, Yang J, Hu Z et al (2024a) AQP4 regulates ferroptosis and oxidative stress of Muller cells in diabetic retinopathy by regulating TRPV4. Exp Cell Res 439:114087. https://doi.org/10.1016/j.yexcr.2024.114087 [DOI: 10.1016/j.yexcr.2024.114087]
Chen Y, Xiao H, Liu Z, Teng F, Yang A, Geng B et al (2024b) Sirt1: an increasingly interesting molecule with a potential role in bone metabolism and osteoporosis. Biomolecules 14:1–23. https://doi.org/10.3390/biom14080970 [DOI: 10.3390/biom14080970]
Cui Y, Lu S, Tan H, Li J, Zhu M, Xu Y (2016) Silencing of long non-coding RNA NONHSAT009968 ameliorates the staphylococcal protein A-inhibited osteogenic differentiation in human bone mesenchymal stem cells. Cell Physiol Biochem 39:1347–1359. https://doi.org/10.1159/000447839 [DOI: 10.1159/000447839]
Domazetovic V, Marcucci G, Iantomasi T, Brandi ML, Vincenzini MT (2017) Oxidative stress in bone remodeling: Role of antioxidants. Clin Cases Miner Bone Metab 14:209–216. https://doi.org/10.11138/ccmbm/2017.14.2.209 [DOI: 10.11138/ccmbm/2017.14.2.209]
Domazetovic V, Marcucci G, Pierucci F, Bruno G, Di Cesare ML, Ghelardini C et al (2019) Blueberry juice protects osteocytes and bone precursor cells against oxidative stress partly through SIRT1. FEBS Open Bio 9:1082–1096. https://doi.org/10.1002/2211-5463.12634 [DOI: 10.1002/2211-5463.12634]
Edwards JR, Perrien DS, Fleming N, Nyman JS, Ono K, Connelly L et al (2013) Silent information regulator (Sir)T1 inhibits NF-κB signaling to maintain normal skeletal remodeling. J Bone Miner Res 28:960–969. https://doi.org/10.1002/jbmr.1824 [DOI: 10.1002/jbmr.1824]
Feng K, Chen Z, Pengcheng L, Zhang S, Wang X (2019) Quercetin attenuates oxidative stress-induced apoptosis via SIRT1/AMPK-mediated inhibition of ER stress in rat chondrocytes and prevents the progression of osteoarthritis in a rat model. J Cell Physiol 234:18192–18205. https://doi.org/10.1002/jcp.28452 [DOI: 10.1002/jcp.28452]
Ferver A, Greene E, Wideman R, Dridi S (2021) Evidence of mitochondrial dysfunction in bacterial chondronecrosis with osteomyelitis-affected broilers. Front Vet Sci 8:1–8. https://doi.org/10.3389/fvets.2021.640901 [DOI: 10.3389/fvets.2021.640901]
Gehrke AKE, Mendoza-Bertelli A, Ledo C, Gonzalez CD, Llana MN, Blanco C et al (2023) Neutralization of Staphylococcus aureus protein A prevents exacerbated osteoclast activity and bone loss during osteomyelitis. Antimicrob Agents Chemother. https://doi.org/10.1128/aac.01140-22 [DOI: 10.1128/aac.01140-22]
Gu W, Jiang X, Wang W, Mujagond P, Liu J, Mai Z et al (2022) Super-enhancer-associated long non-coding RNA LINC01485 promotes osteogenic differentiation of human bone marrow mesenchymal stem cells by regulating MiR-619-5p/RUNX2 axis. Front Endocrinol 13:1–16. https://doi.org/10.3389/fendo.2022.846154 [DOI: 10.3389/fendo.2022.846154]
Guo J, Ren R, Yao X, Ye Y, Sun K, Lin J et al (2020) PKM2 suppresses osteogenesis and facilitates adipogenesis by regulating β-catenin signaling and mitochondrial fusion and fission. Aging 12:3976–3992. https://doi.org/10.18632/aging.102866 [DOI: 10.18632/aging.102866]
Hao Y, Ren Z, Yu L, Zhu G, Zhang P, Zhu J et al (2022) p300 arrests intervertebral disc degeneration by regulating the FOXO3/Sirt1/Wnt/β-catenin axis. Aging Cell 21:1–16. https://doi.org/10.1111/acel.13677 [DOI: 10.1111/acel.13677]
Jing Z, Wang C, Wen S, Jin Y, Meng Q, Liu Q, Wu J, Sun HLM (2021) Phosphocreatine promotes osteoblastic activities in HO-induced MC3T3-E1 cells by regulating SIRT1/FOXO1/PGC-1α signaling pathway. Curr Pharm Biotechnol 22:609–621 [DOI: 10.2174/1389201021999201116160247]
Kim HN, Han L, Iyer S, de Cabo R, Zhao H, O’Brien CA, Manolagas SCAM (2015) Sirtuin1 suppresses osteoclastogenesis by deacetylating FoxOs. Mol Endocrinol 29:1498–1509 [DOI: 10.1210/me.2015-1133]
Kim JM, Lin C, Stavre Z, Greenblatt MB, Shim JH (2020) Osteoblast-osteoclast communication and bone homeostasis. Cells 9:1–14. https://doi.org/10.3390/cells9092073 [DOI: 10.3390/cells9092073]
Li Z, Oh H, Cung M, Marquez SJ, Sun J, Hammad H et al (2020) TAOK3 is a MAP3K contributing to osteoblast differentiation and skeletal mineralization. Biochem Biophys Res Commun 531:497–502. https://doi.org/10.1016/j.bbrc.2020.07.060 [DOI: 10.1016/j.bbrc.2020.07.060]
Li Q, Cheng JCY, Jiang Q, Lee WYW (2021) Role of sirtuins in bone biology: potential implications for novel therapeutic strategies for osteoporosis. Aging Cell 20:1–21. https://doi.org/10.1111/acel.13301 [DOI: 10.1111/acel.13301]
Li M, Shi X, Wu Y, Qi B, Zhang C, Wang B et al (2023) Pmepa1 knockdown alleviates SpA-induced pyroptosis and osteogenic differentiation inhibition of hBMSCs via p38MAPK/NLRP3 axis. Int Immunopharmacol 124:110843. https://doi.org/10.1016/j.intimp.2023.110843 [DOI: 10.1016/j.intimp.2023.110843]
Liang D, Zhuo Y, Guo Z, He L, Wang X, He Y et al (2020) SIRT1/PGC-1 pathway activation triggers autophagy/mitophagy and attenuates oxidative damage in intestinal epithelial cells. Biochimie 170:10–20. https://doi.org/10.1016/j.biochi.2019.12.001 [DOI: 10.1016/j.biochi.2019.12.001]
Louvet L, Leterme D, Delplace S, Miellot F, Marchandise P, Gauthier V et al (2020) Sirtuin 1 deficiency decreases bone mass and increases bone marrow adiposity in a mouse model of chronic energy deficiency. Bone 136:115361. https://doi.org/10.1016/j.bone.2020.115361 [DOI: 10.1016/j.bone.2020.115361]
Lu Y, Ma ZX, Deng R, Jiang HT, Chu L, Deng ZL (2022) The SIRT1 activator SRT2104 promotes BMP9-induced osteogenic and angiogenic differentiation in mesenchymal stem cells. Mech Ageing Dev. https://doi.org/10.1016/j.mad.2022.111724 [DOI: 10.1016/j.mad.2022.111724]
Lu Z, Zhang A, Dai Y (2023) CX3CL1 deficiency ameliorates inflammation, apoptosis and accelerates osteogenic differentiation, mineralization in LPS-treated MC3T3-E1 cells via its receptor CX3CR1. Ann Anat 246:152036. https://doi.org/10.1016/j.aanat.2022.152036 [DOI: 10.1016/j.aanat.2022.152036]
Ma J, Wang Z, Zhao J, Miao W, Ye T, Chen A (2018) Resveratrol attenuates lipopolysaccharides (LPS)-induced inhibition of osteoblast differentiation in MC3T3-E1 cells. Med Sci Monit 24:2045–2052. https://doi.org/10.12659/MSM.905703 [DOI: 10.12659/MSM.905703]
Ma L, Feng X, Wang K, Song Y, Luo R, Yang C (2020) Dexamethasone promotes mesenchymal stem cell apoptosis and inhibits osteogenesis by disrupting mitochondrial dynamics. FEBS Open Bio 10:211–220. https://doi.org/10.1002/2211-5463.12771 [DOI: 10.1002/2211-5463.12771]
Marchi S, Guilbaud E, Tait SWG, Yamazaki T, Galluzzi L (2023) Mitochondrial control of inflammation. Nat Rev Immunol 23:159–173. https://doi.org/10.1038/s41577-022-00760-x [DOI: 10.1038/s41577-022-00760-x]
Maren NA, Duduit JR, Huang D, Zhao F, Ranney TGLW (2023) Stepwise optimization of real-time RT-PCR analysis. Methods Mol Biol 2653:317–332 [DOI: 10.1007/978-1-0716-3131-7_20]
Mendelsohn DH, Schnabel K, Mamilos A, Sossalla S, Pabel S, Duerr GD et al (2022) Structural analysis of mitochondrial dynamics—from cardiomyocytes to osteoblasts: a critical review. Int J Mol Sci. https://doi.org/10.3390/ijms23094571 [DOI: 10.3390/ijms23094571]
Mendelsohn DH, Niedermair T, Walter N, Alt V, Rupp M, Brochhausen C (2023) Ultrastructural evidence of mitochondrial dysfunction in osteomyelitis patients. Int J Mol Sci. https://doi.org/10.3390/ijms24065709 [DOI: 10.3390/ijms24065709]
Muthukrishnan G, Masters EA, Daiss JL, Schwarz EM (2019) Mechanisms of immune evasion and bone tissue colonization that make Staphylococcus aureus the primary pathogen in osteomyelitis. Curr Osteoporos Rep 17:395–404. https://doi.org/10.1007/s11914-019-00548-4 [DOI: 10.1007/s11914-019-00548-4]
Orea-Soufi A, Paik J, Bragança J, Donlon TA, Willcox BJ, Link W (2022) FOXO transcription factors as therapeutic targets in human diseases. Trends Pharmacol Sci 43:1070–1084. https://doi.org/10.1016/j.tips.2022.09.010 [DOI: 10.1016/j.tips.2022.09.010]
Pal S, Singh M, Porwal K, Rajak S, Das N, Rajput S et al (2021) Adiponectin receptors by increasing mitochondrial biogenesis and respiration promote osteoblast differentiation: discovery of isovitexin as a new class of small molecule adiponectin receptor modulator with potential osteoanabolic function. Eur J Pharmacol 913:174634. https://doi.org/10.1016/j.ejphar.2021.174634 [DOI: 10.1016/j.ejphar.2021.174634]
Qi H, Zhu Z, Zhu D (2023) Erythrocyte sedimentation rate for assisted diagnosis of pediatric osteomyelitis: a meta-analysis. Ther Clin Risk Manag 19:1039–1049. https://doi.org/10.2147/TCRM.S440996 [DOI: 10.2147/TCRM.S440996]
Sautchuk R, Yu C, McArthur M, Massie C, Brookes PS, Porter GA et al (2023) Role of the mitochondrial permeability transition in bone metabolism and aging. J Bone Miner Res 38:522–540. https://doi.org/10.1002/jbmr.4787 [DOI: 10.1002/jbmr.4787]
Shen P, Lin W, Ba X, Huang Y, Chen Z, Han L et al (2021) Quercetin-mediated SIRT1 activation attenuates collagen-induced mice arthritis. J Ethnopharmacol 279:114213. https://doi.org/10.1016/j.jep.2021.114213 [DOI: 10.1016/j.jep.2021.114213]
Shi X, Ni H, Tang L, Li M, Wu Y, Xu Y (2023) Identification of molecular subgroups in osteomyelitis induced by Staphylococcus aureus infection through gene expression profiles. BMC Med Genomics 16:1–13. https://doi.org/10.1186/s12920-023-01568-x [DOI: 10.1186/s12920-023-01568-x]
Smith CO, Eliseev RA (2021) Energy metabolism during osteogenic differentiation: the role of Akt. Stem Cells Dev 30:149–162. https://doi.org/10.1089/scd.2020.0141 [DOI: 10.1089/scd.2020.0141]
Sun K, Jing X, Guo J, Yao X, Guo F (2021) Mitophagy in degenerative joint diseases. Autophagy 17:2082–2092. https://doi.org/10.1080/15548627.2020.1822097 [DOI: 10.1080/15548627.2020.1822097]
Thiyagarajan R, Gonzalez MR, Zaw C, Seldeen KL, Hernandez M, Pang MTB (2023) SRT2183 and SRT1720, but not resveratrol, inhibit osteoclast formation and resorption in the presence or absence of Sirt1. J Bone Res 11:1000235 [PMID: 37711761]
Ueda S, Shimasaki M, Ichiseki T, Hirata H, Kawahara N, Ueda Y (2020) Mitochondrial transcription factor a added to osteocytes in a stressed environment has a cytoprotective effect. Int J Med Sci 17:1293–1299. https://doi.org/10.7150/ijms.45335 [DOI: 10.7150/ijms.45335]
Wen H, Chen Z, Cui Y, Xu Y (2021) LncRNA NONHSAT009968 inhibits the osteogenic differentiation of hBMMSCs in SA-induced inflammation via Wnt3a. Biochem Biophys Res Commun 577:24–31. https://doi.org/10.1016/j.bbrc.2021.08.086 [DOI: 10.1016/j.bbrc.2021.08.086]
Wu H, Cao F, Zhou W, Wang G, Liu G, Xia T, Liu M, Mi BLY (2020) Long noncoding RNA FAM83H-AS1 modulates SpA-inhibited osteogenic differentiation in human bone mesenchymal stem cells. Mol Cell Biol 40:e00362-e419 [DOI: 10.1128/MCB.00362-19]
Yang Y, Liu Y, Wang Y, Chao Y, Zhang J, Jia Y et al (2022) Regulation of SIRT1 and its roles in inflammation. Front Immunol 13:1–16. https://doi.org/10.3389/fimmu.2022.831168 [DOI: 10.3389/fimmu.2022.831168]
Ye J, Xiao J, Wang J, Ma Y, Zhang Y, Zhang Q et al (2022) The interaction between intracellular energy metabolism and signaling pathways during osteogenesis. Front Mol Biosci 8:1–12. https://doi.org/10.3389/fmolb.2021.807487 [DOI: 10.3389/fmolb.2021.807487]
Yin L, Xu L, Chen B, Zheng X, Chu J, Niu Y et al (2022) SRT1720 plays a role in oxidative stress and the senescence of human trophoblast HTR8/SVneo cells induced by D-galactose through the SIRT1/FOXO3a/ROS signalling pathway. Reprod Toxicol 111:1–10. https://doi.org/10.1016/j.reprotox.2022.05.001 [DOI: 10.1016/j.reprotox.2022.05.001]
Yu Y, Newman H, Shen L, Sharma D, Hu G, Mirando AJ, Zhang H, Knudsen E, Zhang GF, Hilton MJKC (2019) Glutamine metabolism regulates proliferation and lineage allocation in skeletal stem cells. Cell Metab 29:966–978. https://doi.org/10.1016/j.cmet.2019.01.016.Glutamine [DOI: 10.1016/j.cmet.2019.01.016.Glutamine]
Yu X, Ma X, Lin W, Xu Q, Zhou H, Kuang HY (2021) Long noncoding RNA MIAT regulates primary human retinal pericyte pyroptosis by modulating miR-342–3p targeting of CASP1 in diabetic retinopathy. Exp Eye Res 202:108300. https://doi.org/10.1016/j.exer.2020.108300 [DOI: 10.1016/j.exer.2020.108300]
Zainabadi K (2019) Drugs targeting SIRT1, a new generation of therapeutics for osteoporosis and other bone related disorders? Pharmacol Res 143:97–105. https://doi.org/10.1016/j.phrs.2019.03.007 [DOI: 10.1016/j.phrs.2019.03.007]
Zainabadi K, Liu CJ, Caldwell ALM, Guarente L (2017) SIRT1 is a positive regulator of in vivo bone mass and a therapeutic target for osteoporosis. PLoS ONE 12:1–12. https://doi.org/10.1371/journal.pone.0185236 [DOI: 10.1371/journal.pone.0185236]
Zhang X, Xu J (2024) A novel miR-466l-3p/FGF23 axis promotes osteogenic differentiation of human bone marrow mesenchymal stem cells. Bone 185:117123. https://doi.org/10.1016/j.bone.2024.117123 [DOI: 10.1016/j.bone.2024.117123]
Zhang T, Wang L, Duan X, Niu Y, Li M, Yun L et al (2023) Sirtuins mediate mitochondrial quality control mechanisms: a novel therapeutic target for osteoporosis. Front Endocrinol 14:1–15. https://doi.org/10.3389/fendo.2023.1281213 [DOI: 10.3389/fendo.2023.1281213]
Zhu D, Chen F, Qiang H, Qi H (2024) SPA inhibits hBMSC osteogenic differentiation and M1 macrophage polarization by suppressing SETD2 in acute suppurative osteomyelitis. Sci Rep 14:1–13. https://doi.org/10.1038/s41598-024-63219-0 [DOI: 10.1038/s41598-024-63219-0]
Zia A, Sahebdel F, Farkhondeh T, Ashrafizadeh M, Zarrabi A, Hushmandi K et al (2021) A review study on the modulation of SIRT1 expression by miRNAs in aging and age-associated diseases. Int J Biol Macromol 188:52–61. https://doi.org/10.1016/j.ijbiomac.2021.08.013 [DOI: 10.1016/j.ijbiomac.2021.08.013]

Grants

  1. 202101AO070314/the special basic cooperative research programs of Yunnan provincial undergraduate universities
  2. 82460432/the Regional Science Foundation Project of the National Natural Science Foundation of China

MeSH Term

Sirtuin 1
Animals
Osteogenesis
Mice
Signal Transduction
Cell Differentiation
Mitochondria
Osteomyelitis
Disease Progression
RAW 264.7 Cells
Osteoblasts
Cell Line
Forkhead Transcription Factors
Forkhead Box Protein O1

Chemicals

Sirtuin 1
Sirt1 protein, mouse
Forkhead Transcription Factors
Forkhead Box Protein O1

Word Cloud

Similar Articles

Cited By