Re and Ru Co-Doped Transition Metal Alloy as a Bifunctional Catalyst for Electrooxidation of Glycerol to Formate Coupled with H Production.

Hengyi Chen, Rui-Ting Gao, Kerong Su, Zilong Li, Limin Wu, Lei Wang
Author Information
  1. Hengyi Chen: College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia Key Laboratory of Low Carbon Catalysis, Inner Mongolia University, Hohhot, 010021, China.
  2. Rui-Ting Gao: College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia Key Laboratory of Low Carbon Catalysis, Inner Mongolia University, Hohhot, 010021, China.
  3. Kerong Su: College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia Key Laboratory of Low Carbon Catalysis, Inner Mongolia University, Hohhot, 010021, China.
  4. Zilong Li: College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia Key Laboratory of Low Carbon Catalysis, Inner Mongolia University, Hohhot, 010021, China.
  5. Limin Wu: College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia Key Laboratory of Low Carbon Catalysis, Inner Mongolia University, Hohhot, 010021, China.
  6. Lei Wang: College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia Key Laboratory of Low Carbon Catalysis, Inner Mongolia University, Hohhot, 010021, China. ORCID

Abstract

Glycerol electrooxidation (GOR), as an innovative strategy for the production of value-added chemicals, is considered a promising anodic alternative to oxygen evolution reaction in electrocatalysis. However, the high potential and the limited selectivity and faradaic efficiency impede the industrial-scale application toward GOR. Herein, we for the first time constructed rhenium and ruthenium co-doped transition metal alloy (NiCoFeRuRe) for the efficient electrooxidation of glycerol to formate. Benefiting from the rapid generation of M-OOH induced by Ru element and the inhibition of OER and excessive oxidation of glycerol by Re species through in situ chacterization, the optimized NiCoFeRuRe requires only 1.133 V to achieve a current density of 10 mA cm, a faradaic efficiency of 95.6 % for formate product with a stability more than 450 h. Importantly, employing NiCoFeRuRe as a bifunctional catalyst, the cell is constructed to produce hydrogen and formate simultaneously, which is 265 mV lower than the electrolytic water splitting owning an excellent stability of 350 h. This work provides a facile strategy for rationally designing high-performance GOR catalysts for biomass upgradings.

Keywords

References

P. De Luna, C. Hahn, D. Higgins, S. A. Jaffer, T. F. Jaramillo, E. H. Sargent, Science 2019, 364, 6438.
Y. Liao, S. F. Koelewijn, G. Van den Bossche, J. Van Aelst, S. Van den Bosch, T. Renders, K. Navare, T. Nicolai, K. Van Aelst, M. Maesen, H. Matsushima, J. M. Thevelein, K. Van Acker, B. Lagrain, D. Verboekend, B. F. Sels, Science 2020, 367, 1385–1390.
G. Dodekatos, S. Schünemann, H. Tüysüz, ACS Catal. 2018, 8, 6301–6333.
H. Sheng, A. N. Janes, R. D. Ross, H. Hofstetter, K. Lee, J. R. Schmidt, S. Jin, Nat. Catal. 2022, 5, 716–725.
J. Qu, H. Z. Mao, W. Chen, S. Q. Gao, Y. N. Bai, Y. W. Sun, Y. F. Geng, J. Ye, Biotechnol. Biofuels 2012, 5, 10.
A. Al-Nayili, H. S. Majdi, T. M. Albayati, N. M. C. Saady, Catalysts 2022, 12, 324.
Y. Li, X. Wei, L. Chen, J. Shi, M. He, Nat. Commun. 2019, 10, 5335.
P. Wang, K. Chen, J. Chen, G. Wang, W. Pan, Z. Wen, Adv. Funct. Mater. 2024, 34, 2408267.
B. Huang, Y. Ge, A. Zhang, S. Zhu, B. Chen, G. Li, Q. Yun, Z. Huang, Z. Shi, X. Zhou, L. Li, X. Wang, G. Wang, Z. Guan, L. Zhai, Q. Luo, Z. Li, S. Lu, Y. Chen, C. S. Lee, Y. Han, M. Shao, H. Zhang, Adv. Mater. 2023, 35, e2302233.
Y. Li, X. Wei, R. Pan, Y. Wang, J. Luo, L. Li, L. Chen, J. Shi, Energy Environ. Sci. 2024, 17, 4205–4215.
D. M. Morales, D. Jambrec, M. A. Kazakova, M. Braun, N. Sikdar, A. Koul, A. C. Brix, S. Seisel, C. Andronescu, W. Schuhmann, ACS Catal. 2022, 12, 982–992.
S. Ghosh, B. Mondal, S. Roy, M. Shalom, M. B. Sadan, J. Mater. Chem. A 2022, 10, 8238–8244.
Y. Liao, Y. Chen, L. Li, S. Luo, Y. Qing, C. Tian, H. Xu, J. Zhang, Y. Wu, Adv. Funct. Mater. 2023, 33, 2303300.
Q. Qian, X. He, Z. Li, Y. Chen, Y. Feng, M. Cheng, H. Zhang, W. Wang, C. Xiao, G. Zhang, Y. Xie, Adv. Mater. 2023, 35, e2300935.
X. Liu, Z. Fang, X. Teng, Y. Niu, S. Gong, W. Chen, T. J. Meyer, Z. Chen, J. Energy Chem. 2022, 72, 432–441.
W. Chen, C. Xie, Y. Wang, Y. Zou, C.-L. Dong, Y.-C. Huang, Z. Xiao, Z. Wei, S. Du, C. Chen, B. Zhou, J. Ma, S. Wang, Chem 2020, 6, 2974–2993.
W. Luo, H. Tian, Q. Li, G. Meng, Z. Chang, C. Chen, R. Shen, X. Yu, L. Zhu, F. Kong, X. Cui, J. Shi, Adv. Funct. Mater. 2023, 34, 2306995.
C. Yang, Y. Gao, T. Ma, M. Bai, C. He, X. Ren, X. Luo, C. Wu, S. Li, C. Cheng, Adv. Mater. 2023, 35, e2301836.
L. Fan, Y. Ji, G. Wang, J. Chen, K. Chen, X. Liu, Z. Wen, J. Am. Chem. Soc. 2022, 144, 7224–7235.
Y. K. Lv, Y. Han, K. Wang, W. Y. Sun, C. X. Du, R. W. Huang, P. Peng, S. Q. Zang, ACS Nano 2024, 18, 32186–32195.
Y. Wang, H. Yan, H. Fu, eScience 2024, 10.1016/j.esci.2024.100323, 100323.
E. Zhou, H. Jin, H. Lv, Y. Xie, Y. Lu, Y. R. Lu, T. S. Chan, C. Wang, W. Yan, J. Zhang, H. Ji, X. Wu, X. Duan, J. Am. Chem. Soc. 2024, 146, 20700–20708.
C. Li, H. Li, B. Zhang, H. Li, Y. Wang, X. Wang, P. Das, Y. Li, X. Wu, Y. Li, Y. Cui, J. Xiao, Z. S. Wu, Angew. Chem. Int. Ed. 2024, 63, e202411542.
R. He, L. Yang, Y. Zhang, D. Jiang, S. Lee, S. Horta, Z. Liang, X. Lu, A. O. Moghaddam, J. Li, M. Ibanez, Y. Xu, Y. Zhou, A. Cabot, Adv. Mater. 2023, 35, e2303719.
L. He, M. Li, L. Qiu, S. Geng, Y. Liu, F. Tian, M. Luo, H. Liu, Y. Yu, W. Yang, S. Guo, Nat. Commun. 2024, 15, 2290.
S. Wang, P. He, Z. Xie, L. Jia, M. He, X. Zhang, F. Dong, H. Liu, Y. Zhang, C. Li, Electrochim. Acta 2019, 296, 644–652.
S. Pu, Z. Zhai, C. Yang, Z. Dao, W. Yan, C. Zhuang, C. Min, J. Zhao, Y. Wang, Chem. Eng. J. 2025, 503, 158676.
P. Hu, X. Zhang, M. Xu, Y. Lv, H. Guo, J. S. Chen, X. Ye, H. Xian, X. Sun, T. Li, Appl. Catal. B: Environ. 2024, 357, 124267.
G. Fang, J. Gao, J. Lv, H. Jia, H. Li, W. Liu, G. Xie, Z. Chen, Y. Huang, Q. Yuan, X. Liu, X. Lin, S. Sun, H.-J. Qiu, Appl. Catal. B: Environ. 2020, 268, 118431.
X. B. Zhang, L. Xia, G. Zhao, B. Zhang, Y. Chen, J. Chen, M. Gao, Y. Jiang, Y. Liu, H. Pan, W. Sun, Adv. Mater. 2023, 35, e2208821.
Q.-Q. Pang, X.-Z. Fan, S.-S. Yi, X. Du, Z.-Y. Liu, X.-Z. Yue, Chem. Eng. J. 2024, 500, 157270.
X. Wang, R. Lu, S. Gong, S. Yang, W. Wang, Z. Sun, X. Zhang, J. Liu, X. Lv, Chem. Eng. J. 2025, 503, 157270.
D. L. Wu, B. Liu, R. D. Li, D. Chen, W. H. Zeng, H. Y. Zhao, Y. T. Yao, R. Qin, J. Yu, L. Chen, J. A. Zhang, B. Li, S. C. Mu, Small 2023, e2300030.
L. Sun, J. A. Yuwono, S. Zhang, B. Chen, G. Li, H. Jin, B. Johannessen, J. Mao, C. Zhang, M. Zubair, N. Bedford, Z. Guo, Adv. Mater. 2024, 36, e2401288.
H. Jin, X. Liu, P. An, C. Tang, H. Yu, Q. Zhang, H. J. Peng, L. Gu, Y. Zheng, T. Song, K. Davey, U. Paik, J. Dong, S. Z. Qiao, Nat. Commun. 2023, 14, 354.
J. Wu, J. Li, Y. Li, X. Y. Ma, W. Y. Zhang, Y. Hao, W. B. Cai, Z. P. Liu, M. Gong, Angew. Chem. Int. Ed. 2022, 61, e202113362.
M. K. Goetz, M. T. Bender, K. S. Choi, Nat. Commun. 2022, 13, 5848.
T.-G. Vo, P.-Y. Ho, C.-Y. Chiang, Appl. Catal. B: Environ. 2022, 300, 120723.
Z. Chen, L. Cai, X. Yang, C. Kronawitter, L. Guo, S. Shen, B. E. Koel, ACS Catal. 2018, 8, 1238–1247.
C. Liu, M. Hirohara, T. Maekawa, R. Chang, T. Hayashi, C.-Y. Chiang, Appl. Catal. B: Environ. 2020, 265, 118543.
M. Fleischmann, K. Korinek, D. Pletcher, J. Chem. Soc., Perkin Trans. 2 1972, 1396–1403.
W. Chen, L. Xu, X. Zhu, Y. C. Huang, W. Zhou, D. Wang, Y. Zhou, S. Du, Q. Li, C. Xie, L. Tao, C. L. Dong, J. Liu, Y. Wang, R. Chen, H. Su, C. Chen, Y. Zou, Y. Li, Q. Liu, S. Wang, Angew. Chem. Int. Ed. 2021, 60, 7297–7307.
Z. He, J. Hwang, Z. Gong, M. Zhou, N. Zhang, X. Kang, J. W. Han, Y. Chen, Nat. Commun. 2022, 13, 3777.
Z. Zhao, X. Shen, X. Luo, M. Chen, M. Zhang, R. Yu, R. Jin, H. Zheng, Adv. Energy Mater. 2024, 14, 2400851.
A. Zalineeva, A. Serov, M. Padilla, U. Martinez, K. Artyushkova, S. Baranton, C. Coutanceau, P. B. Atanassov, J. Am. Chem. Soc. 2014, 136, 3937–3945.
C. A. Martins, P. S. Fernández, H. E. Troiani, M. E. Martins, G. A. Camara, J. Electroanal. Chem. 2014, 717–718, 231–236.
L. Huang, J.-Y. Sun, S.-H. Cao, M. Zhan, Z.-R. Ni, H.-J. Sun, Z. Chen, Z.-Y. Zhou, E. G. Sorte, Y. J. Tong, S.-G. Sun, ACS Catal. 2016, 6, 7686–7695.
J. F. Gomes, A. C. Garcia, L. H. S. Gasparotto, N. E. de Souza, E. B. Ferreira, C. Pires, G. Tremiliosi-Filho, Electrochim. Acta 2014, 144, 361–368.
L. Xu, Y. Yang, C. Li, R. Ning, J. Ma, M. Yao, S. Geng, F. Liu, Chem. Eng. J. 2024, 481, 148304.
R. M. L. M. Sandrini, J. R. Sempionatto, G. Tremiliosi-Filho, E. Herrero, J. M. Feliu, J. Souza-Garcia, C. A. Angelucci, ChemElectroChem 2019, 6, 4238–4245.
C. V. Pereira, V. A. Maia, P. J. Zambiazi, R. F. B. de Souza, E. Antolini, A. O. Neto, Results Chem. 2022, 4, 100375.
J. John, H. Wang, E. D. Rus, H. D. Abruña, J. Phys. Chem. C 2012, 116, 5810–5820.
L. Wu, Q. Wu, Y. Han, D. Zhang, R. Zhang, N. Song, X. Wu, J. Zeng, P. Yuan, J. Chen, A. Du, K. Huang, X. Yao, Adv. Mater. 2024, 36, e2401857.

Word Cloud

Similar Articles

Cited By