Combined Treatment of Metformin and Resveratrol Promotes Myogenesis Through Increased Irisin Release in C2C12 Cells.

Eun Ji Seong, Yejin Kim, Zheng-Yuan Su, Hee-Taik Kang, Jong Hun Lee
Author Information
  1. Eun Ji Seong: Department of Food Science and Biotechnology, College of Bio-Nano Technology, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea.
  2. Yejin Kim: Department of Food Science and Biotechnology, College of Bio-Nano Technology, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea.
  3. Zheng-Yuan Su: Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, 320314, Taiwan.
  4. Hee-Taik Kang: Department of Family Medicine, Severance Hospital, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea. familydoctor@yuhs.ac.
  5. Jong Hun Lee: Department of Food Science and Biotechnology, College of Bio-Nano Technology, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea. foodguy@gachon.ac.kr. ORCID

Abstract

PURPOSE: This study aimed to investigate the additive effects of a combination of metformin and resveratrol on irisin expression in C2C12 cells.
METHODS: The study involved treating C2C12 cells with metformin and resveratrol, either alone or in combination, and analyzing their effects on myogenesis and irisin release. The activation of signaling pathways, including AMPK/SIRT1/PGC1α, as well as the relative mRNA and protein expression levels of MyoD, myogenin, and Myh were also assessed.
RESULTS: Combination treatment with metformin and resveratrol significantly increased MyoD, myogenin, Myh, and FNDC5 expression compared with the group treated with metformin alone. The increase in irisin production was associated with phosphorylation of AMPK and upregulation of PGC-1α and SIRT1, indicating activation of the AMPK/SIRT1/PGC-1α pathway. The mRNA and protein expression levels of MyoD, myogenin, and Myh were also significantly higher in the combination treatment group compared to the metformin alone group.
CONCLUSION: The combination of metformin and resveratrol effectively increased irisin release through the AMPK/Sirt1/PGC-1α pathway, suggesting that this combination treatment could enhance myogenesis.

Keywords

References

Bentzinger CF, Wang YX, Rudnicki MA. Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol. 2012;4(2):a008342. [PMID: 22300977]
Chal J, Pourquié O. Making muscle: skeletal myogenesis in vivo and in vitro. Development. 2017;144(12):2104–22. [PMID: 28634270]
Perry RL, Rudnick MA. Molecular mechanisms regulating myogenic determination and differentiation. Front Biosci-Landmark. 2000;5(3):750–67.
Comai G, Tajbakhsh S. Molecular and cellular regulation of skeletal myogenesis. Curr Top Dev Biol. 2014;110:1–73. [PMID: 25248473]
Polyzos SA, Anastasilakis AD, Efstathiadou ZA, Makras P, Perakakis N, Kountouras J, Mantzoros CS. Irisin in metabolic diseases. Endocrine. 2018;59(2):260–74. [PMID: 29170905]
Reza MM, Subramaniyam N, Sim CM, Ge X, Sathiakumar D, McFarlane C, Sharma M, Kambadur R. Irisin is a pro-myogenic factor that induces skeletal muscle hypertrophy and rescues denervation-induced atrophy. Nat Commun. 2017;8(1):1–17.
Vaughan R, Gannon N, Barberena M, Garcia-Smith R, Bisoffi M, Mermier C, Conn C, Trujillo K. Characterization of the metabolic effects of irisin on skeletal muscle in vitro. Diabetes Obes Metab. 2014;16(8):711–8. [PMID: 24476050]
Maak S, Norheim F, Drevon CA, Erickson HP. Progress and challenges in the biology of FNDC5 and irisin. Endocr Rev. 2021;42(4):436–56. [PMID: 33493316]
Huh JY, Panagiotou G, Mougios V, Brinkoetter M, Vamvini MT, Schneider BE, Mantzoros CS. FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism. 2012;61(12):1725–38. [PMID: 23018146]
Varela-Rodríguez BM, Pena-Bello L, Juiz-Valiña P, Vidal-Bretal B, Cordido F, Sangiao-Alvarellos S. FNDC5 expression and circulating irisin levels are modified by diet and hormonal conditions in hypothalamus, adipose tissue and muscle. Sci Rep. 2016;6(1):29898. [PMID: 27432282]
Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Boström EA, Choi JH, Long JZ. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481(7382):463–8. [PMID: 22237023]
Perreault L, Skyler JS, Rosenstock J. Novel therapies with precision mechanisms for type 2 diabetes mellitus. Nat Rev Endocrinol. 2021;17(6):364–77. [PMID: 33948015]
Song R. Mechanism of metformin: a tale of two sites. Diabetes Care. 2016;39(2):187–9. [PMID: 26798149]
Wang Y, An H, Liu T, Qin C, Sesaki H, Guo S, Radovick S, Hussain M, Maheshwari A, Wondisford FE. Metformin improves mitochondrial respiratory activity through activation of AMPK. Cell Rep. 2019;29(6):1511-1523. e1515. [PMID: 31693892]
Mahmassani ZS, McKenzie AI, Petrocelli JJ, de Hart NM, Reidy PT, Fix DK, Ferrara PJ, Funai K, Drummond MJ. Short-term metformin ingestion by healthy older adults improves myoblast function. Am J Physiol Cell Physiol. 2021;320(4):C566–76. [PMID: 33406027]
Suwa M, Egashira T, Nakano H, Sasaki H, Kumagai S. Metformin increases the PGC-1α protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo. J Appl Physiol. 2006;101(6):1685–92. [PMID: 16902066]
Bang S, Kim DE, Kang HT, Lee JH. Metformin restores autophagic flux and mitochondrial function in late passage myoblast to impede age-related muscle loss. Biomed Pharmacother. 2024;180:116981. [PMID: 39533541]
Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13(4):251–62. [PMID: 22436748]
Bruckbauer A, Zemel MB. Synergistic effects of polyphenols and methylxanthines with Leucine on AMPK/Sirtuin-mediated metabolism in muscle cells and adipocytes. PLoS ONE. 2014;9(2):e89166. [PMID: 24551237]
Yang X, Liu Q, Li Y, Tang Q, Wu T, Chen L, Pu S, Zhao Y, Zhang G, Huang C. The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway. Adipocyte. 2020;9(1):484–94. [PMID: 32835596]
Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell. 2006;127(6):1109–22. [PMID: 17112576]
Park CE, Kim M-J, Lee JH, Min B-I, Bae H, Choe W, Kim S-S, Ha J. Resveratrol stimulates glucose transport in C2C12 myotubes by activating AMP-activated protein kinase. Exp Mol Med. 2007;39(2):222–9. [PMID: 17464184]
Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ, Agarwal B, Ye L, Ramadori G, Teodoro JS. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012;15(5):675–90. [PMID: 22560220]
Jiang Q, Cheng X, Cui Y, Xia Q, Yan X, Zhang M, Lan G, Liu J, Shan T, Huang Y. Resveratrol regulates skeletal muscle fibers switching through the AdipoR1-AMPK-PGC-1α pathway. Food Funct. 2019;10(6):3334–43. [PMID: 31095141]
Vaughan RA, Gannon NP, Mermier CM, Conn CA. Irisin, a unique non-inflammatory myokine in stimulating skeletal muscle metabolism. J Physiol Biochem. 2015;71(4):679–89. [PMID: 26399516]
Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, Farnsworth NR, Kinghorn AD, Mehta RG. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science. 1997;275(5297):218–20. [PMID: 8985016]
Szkudelska K, Szkudelski T. Resveratrol, obesity and diabetes. Eur J Pharmacol. 2010;635(1–3):1–8. [PMID: 20303945]
Pervaiz S, Holme AL. Resveratrol: its biologic targets and functional activity. Antioxid Redox Signal. 2009;11(11):2851–97. [PMID: 19432534]
Montesano A, Luzi L, Senesi P, Mazzocchi N, Terruzzi I. Resveratrol promotes myogenesis and hypertrophy in murine myoblasts. J Transl Med. 2013;11(1):1–15.
Shirakawa T, Toyono T, Inoue A, Matsubara T, Kawamoto T, Kokabu S. Factors regulating or regulated by myogenic regulatory factors in skeletal muscle stem cells. Cells. 2022;11(9):1493. [PMID: 35563799]
Chen S-Q, Ding L-N, Zeng N-X, Liu H-M, Zheng S-H, Xu J-W, Li R-M. Icariin induces irisin/FNDC5 expression in C2C12 cells via the AMPK pathway. Biomed Pharmacother. 2019;115:108930. [PMID: 31055234]
Berkes CA, Tapscott SJ. MyoD and the transcriptional control of myogenesis. Semin Cell Dev Biol. 2005;16(4–5):585–95.
Brunetti A, Goldfine ID. Role of myogenin in myoblast differentiation and its regulation by fibroblast growth factor. J Biol Chem. 1990;265(11):5960–3. [PMID: 1690720]
Rochard P, Rodier A, Casas F, Cassar-Malek I, Marchal-Victorion S, Daury L, Wrutniak C, Cabello G. Mitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression and activity of myogenic factors. J Biol Chem. 2000;275(4):2733–44. [PMID: 10644737]
Bi J, Zhang J, Ren Y, Du Z, Li Q, Wang Y, Wei S, Yang L, Zhang J, Liu C. Irisin alleviates liver ischemia-reperfusion injury by inhibiting excessive mitochondrial fission, promoting mitochondrial biogenesis and decreasing oxidative stress. Redox Biol. 2019;20:296–306. [PMID: 30388684]
Reza MM, Subramaniyam N, Sim CM, Ge X, Sathiakumar D, McFarlane C, Sharma M, Kambadur R. Irisin is a pro-myogenic factor that induces skeletal muscle hypertrophy and rescues denervation-induced atrophy. Nat Commun. 2017;8(1):1104. [PMID: 29062100]
Haddad F, Zaldivar F, Cooper DM, Adams GR. IL-6-induced skeletal muscle atrophy. J Appl Physiol. 2005;98(3):911–7. [PMID: 15542570]
Zhang T, Chi Y, Ren Y, Du C, Shi Y, Li Y. Resveratrol reduces oxidative stress and apoptosis in podocytes via Sir2-related enzymes, sirtuins1 (SIRT1)/peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) axis. Med Sci Monit. 2019;25:1220. [PMID: 30765684]
Liu Y, He X-Q, Huang X, Ding L, Xu L, Shen Y-T, Zhang F, Zhu M-B, Xu B-H, Qi Z-Q. Resveratrol protects mouse oocytes from methylglyoxal-induced oxidative damage. PLoS ONE. 2013;8(10):e77960. [PMID: 24194906]
Wang G, Wang Y, Yang Q, Xu C, Zheng Y, Wang L, Wu J, Zeng M, Luo M. Metformin prevents methylglyoxal-induced apoptosis by suppressing oxidative stress in vitro and in vivo. Cell Death Dis. 2022;13(1):29. [PMID: 35013107]
de la Lastra CA, Villegas I. Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications. Biochem Soc Trans. 2007;35(Pt 5):1156–60. [PMID: 17956300]
Gueguen N, Desquiret-Dumas V, Leman G, Chupin S, Baron S, Nivet-Antoine V, Vessieres E, Ayer A, Henrion D, Lenaers G. Resveratrol directly binds to mitochondrial complex I and increases oxidative stress in brain mitochondria of aged mice. PLoS ONE. 2015;10(12):e0144290. [PMID: 26684010]
Li B, Hou D, Guo H, Zhou H, Zhang S, Xu X, Liu Q, Zhang X, Zou Y, Gong Y. Resveratrol sequentially induces replication and oxidative stresses to drive p53-CXCR2 mediated cellular senescence in cancer cells. Sci Rep. 2017;7(1):208. [PMID: 28303009]
Abedi-Taleb E, Vahabi Z, Sekhavati-Moghadam E, Khedmat L, Jazayeri S, Saboor-Yaraghi AA. Upregulation of FNDC5 gene expression in C2C12 cells after single and combined treatments of resveratrol and ATRA. Lipids Health Dis. 2019;18:1–6.
Yang Z, Chen X, Chen Y, Zhao Q. PGC-1 mediates the regulation of metformin in muscle irisin expression and function. Am J Transl Res. 2015;7(10):1850. [PMID: 26692929]

Grants

  1. 2021R1G1A1006485/National Research Foundation of Korea
  2. 2021R1A2C2006013/National Research Foundation of Korea
  3. GCU-202106630001/Gachon University research fund

MeSH Term

Resveratrol
Metformin
Fibronectins
Animals
Mice
Muscle Development
Cell Line
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
Sirtuin 1
MyoD Protein
Myogenin
AMP-Activated Protein Kinases
Signal Transduction
Hypoglycemic Agents
Myoblasts
Stilbenes

Chemicals

Resveratrol
Metformin
Fibronectins
FNDC5 protein, mouse
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
Sirtuin 1
MyoD Protein
Myogenin
AMP-Activated Protein Kinases
Ppargc1a protein, mouse
Sirt1 protein, mouse
MyoD1 myogenic differentiation protein
Hypoglycemic Agents
Stilbenes

Word Cloud

Similar Articles

Cited By