Kauê Machado Costa, Zhewei Zhang, Douglas Deutsch, Yizhou Zhuo, Guochuan Li, Yulong Li, Geoffrey Schoenbaum
Dopamine release in the nucleus accumbens (NAcc) changes quickly in response to errors in predicting events like reward delivery but also slowly ramps up when animals are moving toward a goal. This ramping has attracted much recent attention, as there is controversy regarding its computational role and whether they are driven by dopamine neuron firing or local circuit mechanisms. If the latter is true, cholinergic transmission would be a prime candidate mechanism, and acetylcholine and dopamine signals should be positively correlated during behavior, particularly during motivated approach. However, in the dorsal striatum, striatal cholinergic interneurons typically "dip" their activity when reward or associated cues are presented, in opposition to dopamine, and acetylcholine and dopamine release is generally anti-correlated in vivo. Furthermore, acetylcholine and dopamine have opposing effects on downstream striatal projection neurons (SPNs), which suggests that cholinergic dips create a permissive window for dopamine to drive plasticity. These studies therefore suggest that dopamine and acetylcholine should be anti-correlated during behavior. We tested between these hypotheses by simultaneously recording accumbal dopamine and acetylcholine signals in rats executing a task involving motivated approach. We found that dopamine ramps were not coincidental with changes in acetylcholine. Instead, acetylcholine was positively, negatively, or uncorrelated with dopamine depending on the task phase. Our results suggest that accumbal dopamine and acetylcholine dynamics are largely independent but may combine to engage different postsynaptic mechanisms depending on task demands.
Nat Neurosci. 2025 Mar 13;:
[PMID:
40082616]
Trends Neurosci. 2006 Mar;29(3):125-31
[PMID:
16443285]
Neuroscience. 2014 Dec 12;282:13-22
[PMID:
24463000]
Nat Neurosci. 2024 Feb;27(2):309-318
[PMID:
38212586]
Neuron. 2024 Mar 6;112(5):718-739
[PMID:
38103545]
Neuron. 2015 Nov 18;88(4):762-73
[PMID:
26590347]
Exp Brain Res. 1991;84(3):672-5
[PMID:
1864338]
Cell. 2020 Dec 10;183(6):1600-1616.e25
[PMID:
33248024]
Neuron. 2022 Sep 21;110(18):2949-2960.e4
[PMID:
35931070]
Neuron. 2004 Jul 8;43(1):133-43
[PMID:
15233923]
Nat Methods. 2024 Apr;21(4):680-691
[PMID:
38036855]
Nature. 2012 Dec 20;492(7429):452-6
[PMID:
23178810]
Neurosci Biobehav Rev. 2016 Sep;68:370-386
[PMID:
27235078]
Nature. 2023 Sep;621(7979):543-549
[PMID:
37558873]
Nat Neurosci. 2016 Jun;19(6):845-54
[PMID:
27110917]
Neuron. 2010 Dec 9;68(5):815-34
[PMID:
21144997]
Nat Neurosci. 2022 Sep;25(9):1124-1128
[PMID:
36042311]
Nat Commun. 2025 Jan 2;16(1):59
[PMID:
39746997]
Neural Comput. 2014 Mar;26(3):467-71
[PMID:
24320851]
Nat Commun. 2022 Mar 11;13(1):1296
[PMID:
35277506]
Nat Neurosci. 2004 Jun;7(6):583-4
[PMID:
15146188]
Front Mol Neurosci. 2020 Feb 06;13:14
[PMID:
32116547]
Front Neuroinform. 2015 Apr 08;9:7
[PMID:
25904861]
Nat Methods. 2012 Jun 28;9(7):676-82
[PMID:
22743772]
Cell Rep. 2022 Oct 11;41(2):111470
[PMID:
36223748]
J Neurophysiol. 1995 Mar;73(3):1234-52
[PMID:
7608768]
J Neurochem. 2024 Mar;168(3):312-327
[PMID:
38317429]
J Neurosci. 2024 Mar 6;44(10):
[PMID:
38346894]
Neurosci Behav Physiol. 1999 Sep-Oct;29(5):493-503
[PMID:
10596785]
Nat Neurosci. 2007 Nov;10(11):1458-66
[PMID:
17906621]
Mov Disord. 2015 Jul;30(8):1014-25
[PMID:
26095280]
Nature. 2013 Aug 29;500(7464):575-9
[PMID:
23913271]
Nature. 2019 Jun;570(7759):65-70
[PMID:
31118513]
Curr Biol. 2022 Aug 8;32(15):R817-R824
[PMID:
35944478]
Neuron. 2024 Mar 6;112(5):835-849.e7
[PMID:
38134921]
Nature. 2023 Sep;621(7979):577-585
[PMID:
37557915]
Neural Plast. 2015;2015:814567
[PMID:
26246915]
Neuron. 2010 Jul 29;67(2):294-307
[PMID:
20670836]
Nat Commun. 2022 Dec 24;13(1):7924
[PMID:
36564387]
Nature. 2013 Feb 14;494(7436):238-42
[PMID:
23354054]
J Vis Exp. 2019 Oct 20;(152):
[PMID:
31680685]