Subramanian Pradeep, Johnson Thangaraj Edward Y S, Suganthi Angappan, Senthilkumar Murugaiyan, Saminathan Vangili Ramasamy, Narayanan Manikanda Boopathi
Nabhan GP, Buchmann S (1997) The fraying web of life. In: World resources 2000–2001. UNDP, UNEP, WB, WRI, pp 136–138. https://doi.org/10.1016/B978-0-08-043781-1.X5000-2
Kleijn D, Winfree R, Bartomeus I, Carvalheiro LG, Henry M, Isaacs R, Klein AM, Kremen C, M’Gonigle LK, Rader R, Ricketts TH, Williams NM, Lee Adamson N, Ascher JS, Báldi A, Batáry P, Benjamin F, Biesmeijer JC, Blitzer EJ et al (2015) Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat Commun 6:7414. https://doi.org/10.1038/ncomms8414
[DOI:
10.1038/ncomms8414]
Vanengelsdorp D, Meixner MD (2010) A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J Invertebr Pathol 103(Suppl 1):S80–S95. https://doi.org/10.1016/j.jip.2009.06.011
[DOI:
10.1016/j.jip.2009.06.011]
Vanengelsdorp D, Evan JD, Saegerman C, Mullin C, Haubruge E, Nguyen BK, Frazier M, Frazier J, Cox-Foster D, Chen Y, Underwood R, Tarpy DR, Pettis JS (2009) Colony collapse disorder: a descriptive study. PLoS One 4(8):e6481. https://doi.org/10.1371/journal.pone.0006481
[DOI:
10.1371/journal.pone.0006481]
Wu Y, Zheng Y, Chen Y, Wang S, Chen Y, Hu F, Zheng H (2020) Honey bee (Apis mellifera) gut microbiota promotes host endogenous detoxification capability via regulation of P450 gene expression in the digestive tract. Microb Biotechnol 13(4):1201–1212. https://doi.org/10.1111/1751-7915.13579
[DOI:
10.1111/1751-7915.13579]
El Khoury S, Giovenazzo P, Derome N (2022) Endogenous honeybee gut microbiota metabolize the pesticide clothianidin. Microorganisms 10(3):493. https://doi.org/10.3390/microorganisms10030493
[DOI:
10.3390/microorganisms10030493]
Motta EVS, Gage A, Smith TE, Blake KJ, Kwong WK, Riddington IM, Moran N (2022) Host-microbiome metabolism of a plant toxin in bees. eLife 11:e83991. https://doi.org/10.7554/eLife.82595
[DOI:
10.7554/eLife.82595]
Traynor KS, Tosi S, Rennich K, Steinhauer N, Forsgren E, Rose R, Kunke G, Madella S, Lopez D, Eversole H, Fahey R, Pettis J, Evans JD, Dennis vanEngelsdorp, (2021) Pesticides in honey bee colonies: establishing a baseline for real world exposure over seven years in the USA. Environ pollut 279:116566. https://doi.org/10.1016/j.envpol.2021.116566
[DOI:
10.1016/j.envpol.2021.116566]
Leska A, Nowak A, Rosicka-Kaczmarek J, Ryngajłło M, Czarnecka-Chrebelska KH (2023) Characterization and protective properties of lactic acid bacteria intended to be used in probiotic preparation for honeybees (Apis mellifera L.)-an in vitro study. Animals 13(6):1059. https://doi.org/10.3390/ani13061059
[DOI:
10.3390/ani13061059]
Butler È, Alsterfjord M, Olofsson TC, Karlsson C, Malmström J, Vásquez A (2013) Proteins of novel lactic acid bacteria from Apis mellifera mellifera: an insight into the production of known extra-cellular proteins during microbial stress. BMC Microbiol 13:235. https://doi.org/10.1186/1471-2180-13-235
[DOI:
10.1186/1471-2180-13-235]
Olofsson TC, Butler È, Markowicz P, Lindholm C, Larsson L, Vásquez A (2016) Lactic acid bacterial symbionts in honeybees - an unknown key to honey’s antimicrobial and therapeutic activities. Int Wound J 13(5):668–679. https://doi.org/10.1111/iwj.12345
[DOI:
10.1111/iwj.12345]
Collison E, Hird H, Cresswell J, Tyler C (2016) Interactive effects of pesticide exposure and pathogen infection on bee health - a critical analysis. Biol Rev Camb Philos Soc 91(4):1006–1019. https://doi.org/10.1111/brv.12206
[DOI:
10.1111/brv.12206]
Goulson D, Nicholls E, Botías C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347(6229):1255957. https://doi.org/10.1126/science.1255957
[DOI:
10.1126/science.1255957]
Vanbergen AJ, Initiative tIP (2013) Threats to an ecosystem service: pressures on pollinators. Front Ecol Environ 11(5):251–259. https://doi.org/10.1890/120126
[DOI:
10.1890/120126]
Biesmeijer JC, Roberts SP, Reemer M, Ohlemüller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313(5785):351–354. https://doi.org/10.1126/science.1127863
[DOI:
10.1126/science.1127863]
Colla S, Gadallah F, Richardson L, Wagner D, Gall L (2012) Assessing declines of North American bumble bees (Bombus spp.) using museum specimens. Biodivers Conserv 21:3585–3595. https://doi.org/10.1007/s10531-012-0383-2
[DOI:
10.1007/s10531-012-0383-2]
Thompson HM (2003) Behavioural effects of pesticides in bees-their potential for use in risk assessment. Ecotoxicology 12(1–4):317–330. https://doi.org/10.1023/a:1022575315413
[DOI:
10.1023/a]
Johansen CA, Mayer DF, Eves JD, Kious CW (1983) Pesticides and Bee. Environ Entomol 12(5):1513–1518. https://doi.org/10.1093/ee/12.5.1513
[DOI:
10.1093/ee/12.5.1513]
Brittain C, Potts SG (2011) The potential impacts of insecticides on the life-history traits of bees and the consequences for pollination. Basic Appl Ecol 12:321–331. https://doi.org/10.1016/j.baae.2010.12.004
[DOI:
10.1016/j.baae.2010.12.004]
Stanley DA, Garratt MPD, Wickens JB, Wickens VJ, Potts SG, Raine NE (2015) Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees. Nature 528(7583):548–550. https://doi.org/10.1038/nature16167
[DOI:
10.1038/nature16167]
Crenna E, Jolliet O, Collina E, Sala S, Fantke P (2020) Characterizing honey bee exposure and effects from pesticides for chemical prioritization and life cycle assessment. Environ Int 138:105642. https://doi.org/10.1016/j.envint.2020.105642
[DOI:
10.1016/j.envint.2020.105642]
Sánchez-Bayo F, Goulson D, Pennacchio F, Nazzi F, Goka K, Desneux N (2016) Are bee diseases linked to pesticides? A brief review. Environ Int 89–90:7–11. https://doi.org/10.1016/j.envint.2016.01.009
[DOI:
10.1016/j.envint.2016.01.009]
Schmaranzer S (2000) Thermoregulation of water collecting honey bees (Apis mellifera). J Insect Physiol 46(8):1187–1194. https://doi.org/10.1016/s0022-1910(00)00039-1
[DOI:
10.1016/s0022-1910(00)00039-1]
Zubrod JP, Bundschuh M, Arts G, Brühl A, Imfeld G, Knäbel A, Payraudeau S, Rasmussen JJ, Rohr J, Scharmüller A, Smalling K, Stehle S, Schulz R, Schäfer RB (2019) Fungicides: an overlooked pesticide class? Environ sci technol 53(7):3347–3365. https://doi.org/10.1021/acs.est.8b04392
[DOI:
10.1021/acs.est.8b04392]
Krupke CH, Hunt GJ, Eitzer BD, Andino G, Given K (2012) Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS One 7(1):e29268. https://doi.org/10.1371/journal.pone.0029268
[DOI:
10.1371/journal.pone.0029268]
Francisco SB, Koichi G (2016) Impacts of pesticides on honey bees. In: Emerson Dechechi C (ed) Beekeeping and bee conservation. IntechOpen. https://doi.org/10.5772/61424
Belden JB, Gilliom RJ, Martin JD, Lydy MJ (2007) Relative toxicity and occurrence patterns of pesticide mixtures in streams draining agricultural watersheds dominated by corn and soybean production. Integr Environ Assess Manag 3(1):90–100. https://doi.org/10.1002/ieam.5630030108
[DOI:
10.1002/ieam.5630030108]
Bonmatin JM, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke C, Liess M, Long E, Marzaro M, Mitchell EA, Noome DA, Simon-Delso N, Tapparo A (2015) Environmental fate and exposure; neonicotinoids and fipronil. Environ Sci Pollut Res Int 22(1):35–67. https://doi.org/10.1007/s11356-014-3332-7
[DOI:
10.1007/s11356-014-3332-7]
Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, Vanengelsdorp D, Pettis JS (2010) High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS One 5(3):e9754. https://doi.org/10.1371/journal.pone.0009754
[DOI:
10.1371/journal.pone.0009754]
Genersch E, von der Ohe W, Kaatz H, Schroeder A, Otten C, Büchler R, Berg S, Ritter W, Mühlen W, Gisder S, Meixner M, Liebig G, Rosenkranz P (2010) The German bee monitoring project: a long-term study to understand periodically high winter losses of honey bee colonies. Apidologie 41(3):332–352. https://doi.org/10.1051/apido/2010014
[DOI:
10.1051/apido/2010014]
Porrini C, Mutinelli F, Bortolotti L, Granato A, Laurenson L, Roberts K, Gallina A, Silvester N, Medrzycki P, Renzi T, Sgolastra F, Lodesani M (2016) The status of honey bee health in Italy: results from the nationwide bee monitoring network. PloS one 11(5):e0155411. https://doi.org/10.1371/journal.pone.0155411
[DOI:
10.1371/journal.pone.0155411]
Partap U (2011) The Pollination Role of Honeybees. In: Hepburn HR, Radloff SE (eds) Honeybees of Asia. Springer, Berlin Heidelberg, pp 227–255. https://doi.org/10.1007/978-3-642-16422-4_11
[DOI:
10.1007/978-3-642-16422-4_11]
Atkins EL (1992) Injury to honey bee by poisoning. In: Graham JE (ed) The hive and the honey bee. Hamilton, IL, Dadant and Sons, pp 1153–1208
Fulton CA, Huff Hartz KE, Fell RD, Brewster CC, Reeve JD, Lydy MJ (2019) An assessment of pesticide exposures and land use of honey bees in Virginia. Chemosphere 222:489–493. https://doi.org/10.1016/j.chemosphere.2019.01.156
[DOI:
10.1016/j.chemosphere.2019.01.156]
Martel AC, Zeggane S, Aurières C, Drajnudel P, Faucon JP, Aubert M (2007) Acaricide residues in honey and wax after treatment of honey bee colonies with Apivar® or Asuntol®50. Apidologie 38(6):534–544. https://doi.org/10.1051/apido:2007038
[DOI:
10.1051/apido]
Stoner KA, Eitzer BD (2016) Correction: using a hazard quotient to evaluate pesticide residues detected in pollen trapped from honey bees (Apis mellifera) in Connecticut. PLoS One 11(7):e0159696. https://doi.org/10.1371/journal.pone.0159696
[DOI:
10.1371/journal.pone.0159696]
Iturbe-Requena SL, Prado-Ochoa MG, Muñoz-Guzmán MA, Carrillo-Miranda L, Velázquez-Sánchez AM, Ángeles E, Alba-Hurtado F (2020) Acute oral and contact toxicity of new ethyl-carbamates on the mortality and acetylcholinesterase activity of honey bee (Apis mellifera). Chemosphere 242:125293. https://doi.org/10.1016/j.chemosphere.2019.125293
[DOI:
10.1016/j.chemosphere.2019.125293]
Radwan MHI, Sand RE, Hendawy MA (2020) Acute toxicity of some insecticides on honeybee, Apis mellifera L Zagazig. J Agric Res 47(1):65–70. https://doi.org/10.21608/zjar.2020.70119
[DOI:
10.21608/zjar.2020.70119]
Ulziibayar D, Jung C (2019) Comparison of acute toxicity of different groups of pesticides to honey bee workers (Apis mellifera L). J Apicult 34:305–313. https://doi.org/10.17519/apiculture.2019.11.34.4.305
[DOI:
10.17519/apiculture.2019.11.34.4.305]
Oruc HH, Hranitz JM, Sorucu A, Duell M, Cakmak I, Aydin L, Orman A (2012) Determination of acute oral toxicity of flumethrin in honey bees. J Econ Entomol 105(6):1890–1894. https://doi.org/10.1603/ec12055
[DOI:
10.1603/ec12055]
Pilling ED, Bromleychallenor KAC, Walker CH, Jepson PC (1995) Mechanism of Synergism between the pyrethroid insecticide λ-cyhalothrin and the imidazole fungicide prochloraz, in the honeybee (Apis mellifera L). Pestic Bioche Physiol 51(1):1–11. https://doi.org/10.1006/pest.1995.1001
[DOI:
10.1006/pest.1995.1001]
Decourtye A, Devillers J (2010) Ecotoxicity of neonicotinoid insecticides to bees. In: Thany SH (ed) Insect nicotinic acetylcholine receptors. Springer, New York, pp 85–95. https://doi.org/10.1007/978-1-4419-6445-8_8
[DOI:
10.1007/978-1-4419-6445-8_8]
Suchail S, Guez D, Belzunces LP (2001) Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera. Environ Toxicol Chem 20(11):2482–2486. https://doi.org/10.1897/1551-5028(2001)020%3c2482:dbaact%3e2.0.co;2
[DOI:
10.1897/1551-5028(2001)020<2482]
Badawy MEI, Nasr HM, Rabea EI (2015) Toxicity and biochemical changes in the honey bee Apis mellifera exposed to four insecticides under laboratory conditions. Apidologie 46(2):177–193. https://doi.org/10.1007/s13592-014-0315-0
[DOI:
10.1007/s13592-014-0315-0]
Iwasa T, Motoyama N, Ambrose J, Roe RM (2004) Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee. Crop Prot 23:371–378. https://doi.org/10.1016/j.cropro.2003.08.018
[DOI:
10.1016/j.cropro.2003.08.018]
Li Z, Li M, He J, Zhao X, Chaimanee V, Huang WF, Nie H, Zhao Y, Su S (2017) Differential physiological effects of neonicotinoid insecticides on honey bees: a comparison between Apis mellifera and Apis cerana. Pestic Biochem Physiol 140:1–8. https://doi.org/10.1016/j.pestbp.2017.06.010
[DOI:
10.1016/j.pestbp.2017.06.010]
Dillon RJ, Vennard CT, Buckling A, Charnley AK (2005) Diversity of locust gut bacteria protect against pathogen invasion. Ecol Lett 8(12):1291–1298. https://doi.org/10.1111/j.1461-0248.2005.00828.x
[DOI:
10.1111/j.1461-0248.2005.00828.x]
Greiner T, Bäckhed F (2011) Effects of the gut microbiota on obesity and glucose homeostasis. Trends Endocrinol Metab 22(4):117–123. https://doi.org/10.1016/j.tem.2011.01.002
[DOI:
10.1016/j.tem.2011.01.002]
Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T (2012) Symbiont-mediated insecticide resistance. Proc Natl Acad Sci USA 109(22):8618–8622. https://doi.org/10.1073/pnas.1200231109
[DOI:
10.1073/pnas.1200231109]
LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M (2013) Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 24(2):160–168. https://doi.org/10.1016/j.copbio.2012.08.005
[DOI:
10.1016/j.copbio.2012.08.005]
Piccart K, Vásquez A, Piepers S, De Vliegher S, Olofsson TC (2016) Lactic acid bacteria from the honeybee inhibit the in vitro growth of mastitis pathogens. J Dairy Sci 99:2940–2944. https://doi.org/10.3168/jds.2015-10208
[DOI:
10.3168/jds.2015-10208]
Vásquez A, Forsgren E, Fries I, Paxton RJ, Flaberg E, Szekely L, Olofsson TC (2012) Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PLoS One 7(3):e33188. https://doi.org/10.1371/journal.pone.0033188
[DOI:
10.1371/journal.pone.0033188]
Agus A, Planchais J, Sokol H (2018) Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23(6):716–724. https://doi.org/10.1016/j.chom.2018.05.003
[DOI:
10.1016/j.chom.2018.05.003]
Hariprasath K, Mohankumar S, Sudha M, Saranya N, Saminathan VR (2025) The role of honeybee gut and honey microbiome in sustainable bee and human health. J Pure Appl Microbiol 19. https://doi.org/10.22207/JPAM.19.1.03
Khan KA, Ganeshprasad DN, Sachin HR, Shouche YS, Ghramh HA, Sneharani AH (2023) Gut microbial diversity in Apis cerana indica and Apis florea colonies: a comparative study. Front Vet Sci 10:1149876. https://doi.org/10.1016/j.chom.2018.05.003
[DOI:
10.1016/j.chom.2018.05.003]
Kwong WK, Moran NA (2016) Gut microbial communities of social bees. Nat Rev Microbiol 14(6):374–384. https://doi.org/10.1038/nrmicro.2016.43
[DOI:
10.1038/nrmicro.2016.43]
Engel P, Martinson VG, Moran NA (2012) Functional diversity within the simple gut microbiota of the honey bee. Proc Natl Acad Sci USA 109(27):11002–11007. https://doi.org/10.1073/pnas.1202970109
[DOI:
10.1073/pnas.1202970109]
Lee FJ, Rusch DB, Stewart FJ, Mattila HR, Newton IL (2015) Saccharide breakdown and fermentation by the honey bee gut microbiome. Environ Microbiol 17(3):796–815. https://doi.org/10.1111/1462-2920.12526
[DOI:
10.1111/1462-2920.12526]
Claudianos C, Ranson H, Johnson RM, Biswas S, Schuler MA, Berenbaum MR, Feyereisen R, Oakeshott JG (2006) A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Mol Biol 15(5):615–636. https://doi.org/10.1111/j.1365-2583.2006.00672.x
[DOI:
10.1111/j.1365-2583.2006.00672.x]
Filannino P, Di Cagno R, Addante R, Pontonio E, Gobbetti M (2016) Metabolism of fructophilic lactic acid bacteria isolated from the Apis mellifera L. bee gut: phenolic acids as external electron acceptors. Appl Environ Microbiol 82(23):6899–6911. https://doi.org/10.1128/AEM.02194-16
[DOI:
10.1128/AEM.02194-16]
Quinto E, Jiménez P, Caro I, Tejero J, Mateo J, Girbes T (2014) Probiotic lactic acid bacteria: a review food and nutrition. Sciences 5:1765–1775. https://doi.org/10.4236/fns.2014.518190
[DOI:
10.4236/fns.2014.518190]
Ludwig W, Schleifer K-H, Whitman WB (2015) Bacilli class. nov.†. In: Trujillo ME, Dedysh S, DeVos P, Hedlund B, Kämpfer P, Rainey FA, Whitman WB (eds) Bergey's Manual of Systematics of Archaea and Bacteria. https://doi.org/10.1002/9781118960608.cbm00033
Mokoena MP (2017) Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules 22(8):1255. https://doi.org/10.3390/molecules22081255
[DOI:
10.3390/molecules22081255]
Endo A, Futagawa-Endo Y, Dicks LM (2009) Isolation and characterization of fructophilic lactic acid bacteria from fructose-rich niches. Syst Appl Microbiol 32(8):593–600. https://doi.org/10.1016/j.syapm.2009.08.002
[DOI:
10.1016/j.syapm.2009.08.002]
Leisner JJ, Vancanneyt M, Van der Meulen R, Lefebvre K, Engelbeen K, Hoste B, Laursen BG, Bay L, Rusul G, De Vuyst L, Swings J (2005) Leuconostoc durionis sp. Nov., a heterofermenter with no detectable gas production from glucose. Int J Syst Evol Microbiol 55(3):1267–1270. https://doi.org/10.1099/ijs.0.63434-0
[DOI:
10.1099/ijs.0.63434-0]
Papalexandratou Z, Falony G, Romanens E, Jimenez JC, Amores F, Daniel HM, De Vuyst L (2011) Species diversity, community dynamics, and metabolite kinetics of the microbiota associated with traditional Ecuadorian spontaneous cocoa bean fermentations. Appl Environ Microbiol 77(21):7698–7714. https://doi.org/10.1128/aem.05523-11
[DOI:
10.1128/aem.05523-11]
Endo A, Salminen S (2013) Honeybees and beehives are rich sources for fructophilic lactic acid bacteria. Syst Appl Microbiol 36(6):444–448. https://doi.org/10.1016/j.syapm.2013.06.002
[DOI:
10.1016/j.syapm.2013.06.002]
Asama T, Arima TH, Gomi T, Keishi T, Tani H, Kimura Y, Tatefuji T, Hashimoto K (2015) Lactobacillus kunkeei YB38 from honeybee products enhances IgA production in healthy adults. J Appl Microbiol 119(3):818–826. https://doi.org/10.1111/jam.12889
[DOI:
10.1111/jam.12889]
Iorizzo M, Pannella G, Lombardi SJ, Ganassi S, Testa B, Succi M, Sorrentino E, Petrarca S, De Cristofaro A, Coppola R, Tremonte P (2020) Inter and intraspecies diversity of lactic acid bacteria in Apis mellifera ligustica colonies. Microorganisms 8(10):1578. https://doi.org/10.3390/microorganisms8101578
[DOI:
10.3390/microorganisms8101578]
Zheng H, Powell JE, Steele I, Dietrich C, Moran NA (2017) Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc Natl Acad Sci USA 114(18):4775–4780. https://doi.org/10.1073/pnas.1701819114
[DOI:
10.1073/pnas.1701819114]
ISAPP (2018) Minimum criteria for probiotics. Sacramento, CA: International Scientific Association for Probiotics and Prebiotics. https://isappscience.org/wp-content/uploads/2018/10/summary-document-probiotics-criteria-ISAPP.pdf . Accessed 12.03.2025
O’Toole PW, Marchesi JR, Hill C (2017) Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat Microbiol 2:17057. https://doi.org/10.1038/nmicrobiol.2017.57
[DOI:
10.1038/nmicrobiol.2017.57]
Doron S, Snydman DR (2015) Risk and safety of probiotics. Clin Infect Dis 60(Suppl 2):S129–S134. https://doi.org/10.1093/cid/civ085
[DOI:
10.1093/cid/civ085]
Elzeini HM, Ali ARAA, Nasr NF, Hassan M, Hassan AAM, Elenany YE (2021) Probiotic capability of novel lactic acid bacteria isolated from worker honey bees gut microbiota. FEMS Microbiol Lett 368(6):fnab030. https://doi.org/10.1093/femsle/fnab030
[DOI:
10.1093/femsle/fnab030]
Al-Ghamdi A, Ali Khan K, Javed Ansari M, Almasaudi SB, Al-Kahtani S (2018) Effect of gut bacterial isolates from Apis mellifera jemenitica on Paenibacillus larvae infected bee larvae. Saudi J Biol Sci 25(2):383–387. https://doi.org/10.1016/j.sjbs.2017.07.005
[DOI:
10.1016/j.sjbs.2017.07.005]
Yoshiyama M, Wu M, Sugimura Y, Takaya N, Kimoto-Nira H, Suzuki C (2013) Inhibition of Paenibacillus larvae by lactic acid bacteria isolated from fermented materials. J Invertebr Pathol 112(1):62–67. https://doi.org/10.1016/j.jip.2012.09.002
[DOI:
10.1016/j.jip.2012.09.002]
Pătruică S, Mot D (2012) The effect of using prebiotic and probiotic products on intestinal micro-flora of the honeybee (Apis mellifera carpatica). Bull Entomol Res 102(6):619–623. https://doi.org/10.1017/S0007485312000144
[DOI:
10.1017/S0007485312000144]
Alberoni D, Baffoni L, Gaggìa F, Ryan PM, Murphy K, Ross PR, Stanton C, Di Gioia D (2018) Impact of beneficial bacteria supplementation on the gut microbiota, colony development and productivity of Apis mellifera L. Benef Microbes 9(2):269–278. https://doi.org/10.3920/BM2017.0061
[DOI:
10.3920/BM2017.0061]
Audisio MC, Benítez-Ahrendts MR (2011) Lactobacillus johnsonii CRL1647, isolated from Apis mellifera L. bee-gut, exhibited a beneficial effect on honeybee colonies. Benef Microbes 2(1):29–34. https://doi.org/10.3920/bm2010.0024
[DOI:
10.3920/bm2010.0024]
Audisio MC, Sabaté DC, Benítez-Ahrendts MR (2015) Effect of Lactobacillus johnsonii CRL1647 on different parameters of honeybee colonies and bacterial populations of the bee gut. Benef Microbes 6(5):687–695. https://doi.org/10.3920/bm2014.0155
[DOI:
10.3920/bm2014.0155]
Fanciotti MN, Tejerina M, Benítez-Ahrendts MR, Audisio MC (2018) Honey yield of different commercial apiaries treated with Lactobacillus salivarius Aiob, a new bee-probiotic strain. Benef Microbes 9(2):291–298. https://doi.org/10.3920/bm2017.0089
[DOI:
10.3920/bm2017.0089]
Evans JD, Lopez DL (2004) Bacterial probiotics induce an immune response in the honey bee (Hymenoptera: Apidae). J Econ Entomol 97(3):752–756. https://doi.org/10.1603/0022-0493(2004)097[0752:bpiair]2.0.co;2
[DOI:
10.1603/0022-0493(2004)097[0752]
Barakat M, Abdulrazzaq S, Badwan A, El-Banna S, Al-Dalaeen A, Jamma’ah S, Jaber M, Qaddoumi S, Alnajjar M (2023) Examining the effect of lactic-acid-producing bacteria on honey quality and quantity. Jordan J Appl Sci Nat Sci Ser 17:39–43. https://doi.org/10.35192/jjoas-n.v17i2.1504
[DOI:
10.35192/jjoas-n.v17i2.1504]
Patruica S, Hutu I (2013) Economic benefits of using prebiotic and probiotic products as supplements in stimulation feeds administered to bee colonies. Turk J Vet Anim Sci 37(3):259–263. https://doi.org/10.3906/vet-1110-20
[DOI:
10.3906/vet-1110-20]
Tlak Gajger I, Vlainić J, Šoštarić P, Prešern J, Bubnič J, Smodiš Škerl MI (2020) Effects on some therapeutical, biochemical, and immunological parameters of honey bee (Apis mellifera) exposed to probiotic treatments, in field and laboratory conditions. Insects 11(9):638. https://doi.org/10.3390/insects11090638
[DOI:
10.3390/insects11090638]
Guo L, Tang J, Tang M, Luo S, Zhou X (2023) Reactive oxygen species are regulated by immune deficiency and toll pathways in determining the host specificity of honeybee gut bacteria. Proc Natl Acad Sci U S A 120(33). https://doi.org/10.1073/pnas.2219634120
Anderson KE, Allen NO, Copeland DC, Kortenkamp OL, Erickson R, Mott BM, Oliver R (2024) A longitudinal field study of commercial honey bees shows that non-native probiotics do not rescue antibiotic treatment, and are generally not beneficial. Sci Rep 14:1954. https://doi.org/10.1038/s41598-024-52118-z
[DOI:
10.1038/s41598-024-52118-z]
Peghaire E, Moné A, Delbac F, Debroas D, Chaucheyras-Durand F, El Alaoui (2019) A Pediococcus strain to rescue honeybees by decreasing Nosema ceranae and pesticide-induced adverse effects. Pestic Biochem Physiol 163. https://doi.org/10.1016/j.pestbp.2019.11.006
Leska A, Nowak A, Miśkiewicz K, Rosicka-Kaczmarek J (2022) Binding and detoxification of insecticides by potentially probiotic lactic acid bacteria isolated from honeybee (Apis mellifera L.) environment-An In vitro study. Cells 11(23):3743. https://doi.org/10.3390/cells11233743
[DOI:
10.3390/cells11233743]
Liu P, Niu J, Zhu Y, Li Z, Ye L, Cao H, Shi T, Yu L (2022) Apilactobacillus kunkeei alleviated toxicity of acetamiprid in honeybee. Insects 13(12):1167. https://doi.org/10.3390/insects13121167
[DOI:
10.3390/insects13121167]
Harishankar MK, Sasikala C, Ramya M (2013) Efficiency of the intestinal bacteria in the degradation of the toxic pesticide, chlorpyrifos. 3 Biotech 3(2):137–142. https://doi.org/10.1007/s13205-012-0078-0
[DOI:
10.1007/s13205-012-0078-0]
Zhang YH, Xu D, Zhao XH, Song Y, Liu YL, Li N (2016) Biodegradation of two organophosphorus pesticides in whole corn silage as affected by the cultured Lactobacillus plantarum. 3 Biotech 6(1):73. https://doi.org/10.1007/s13205-016-0364-3
[DOI:
10.1007/s13205-016-0364-3]
Li C, Ma Y, Mi Z, Huo R, Zhou T, Hai H, Kwok LY, Sun Z, Chen Y, Zhang H (2018) Screening for Lactobacillus plantarum strains that possess organophosphorus pesticide-degrading activity and metabolomic analysis of phorate degradation. Front Microbiol 9:2048. https://doi.org/10.3389/fmicb.2018.02048
[DOI:
10.3389/fmicb.2018.02048]
Dorđević TM, Siler-Marinković SS, Durović-Pejčev RD, Dimitrijević-Branković SI, Gajić Umiljendić JS (2013) Dissipation of pirimiphos-methyl during wheat fermentation by Lactobacillus plantarum. Lett Appl Microbiol 57(5):412–419. https://doi.org/10.1111/lam.12128
[DOI:
10.1111/lam.12128]
Bose A, Perumal Y, Sabarinathan KG, David PMM (2023) In vitro degradation of profenofos by rice grain rinse water lactic acid bacteria (LAB). Ecol Environ Conserv 29:S364–S368. https://doi.org/10.53550/EEC.2023.v29i01s.056
[DOI:
10.53550/EEC.2023.v29i01s.056]
Azizi A, Homayouni A (2010) Bacterial-degradation of pesticides residue in vegetables during fermentation. Asian J Chem 21(8):6255–6264. https://asianpubs.org/index.php/ajchem/article/view/12313 . Accessed 12.03.2025
Yuan S, Li C, Yu H, Xie Y, Guo Y, Yao W (2021) Screening of lactic acid bacteria for degrading organophosphorus pesticides and their potential protective effects against pesticide toxicity. Lwt 147:111672. https://doi.org/10.1016/j.lwt.2021.111672
[DOI:
10.1016/j.lwt.2021.111672]
Zhang YH, Xu D, Liu JQ, Zhao XH (2014) Enhanced degradation of five organophosphorus pesticides in skimmed milk by lactic acid bacteria and its potential relationship with phosphatase production. Food chem 164:173–178. https://doi.org/10.1016/j.foodchem.2014.05.059
[DOI:
10.1016/j.foodchem.2014.05.059]
Zhou XW, Zhao XH (2015) Susceptibility of nine organophosphorus pesticides in skimmed milk towards inoculated lactic acid bacteria and yogurt starters. J Sci Food Agric 95(2):260–266. https://doi.org/10.1002/jsfa.6710
[DOI:
10.1002/jsfa.6710]
Kumral A, Kumral NA, Gurbuz O (2020) Chlorpyrifos and deltamethrin degradation potentials of two Lactobacillus plantarum (Orla-Jensen, 1919) (Lactobacillales: Lactobacillaceae) strains. Turk J Entomol 44(2):165–176. https://doi.org/10.16970/entoted.625156
[DOI:
10.16970/entoted.625156]
Duan J, Cheng Z, Bi J, Xu Y (2018) Residue behavior of organochlorine pesticides during the production process of yogurt and cheese. Food Chem 245:119–124. https://doi.org/10.1016/j.foodchem.2017.10.017
[DOI:
10.1016/j.foodchem.2017.10.017]
Yuan S, Yang F, Yu H, Xie Y, Guo Y, Yao W (2021) Biodegradation of the organophosphate dimethoate by Lactobacillus plantarum during milk fermentation. Food chem 360:130042. https://doi.org/10.1016/j.foodchem.2021.130042
[DOI:
10.1016/j.foodchem.2021.130042]
Wang YS, Wu TH, Yan Y, Zhu CL, Din CL, Dai CC (2016) Binding and detoxification of chlorpyrifos by lactic acid bacteria on rice straw silage fermentation. J Environ Sci Health B 51(5):316–325. https://doi.org/10.1080/03601234.2015.1128744
[DOI:
10.1080/03601234.2015.1128744]
Cho KM, Math RK, Islam SM, Lim WJ, Hong SY, Kim JM, Yun MG, Cho JJ, Yun HD (2009) Biodegradation of chlorpyrifos by lactic acid bacteria during kimchi fermentation. J Agric Food Chem 57(5):1882–1889. https://doi.org/10.1021/jf803649z
[DOI:
10.1021/jf803649z]
Islam SM, Math RK, Cho KM, Lim WJ, Hong SY, Kim JM, Yun MG, Cho JJ, Yun HD (2010) Organophosphorus hydrolase (OpdB) of Lactobacillus brevis WCP902 from kimchi is able to degrade organophosphorus pesticides. J Agric Food Chem 58(9):5380–5386. https://doi.org/10.1021/jf903878e
[DOI:
10.1021/jf903878e]
Zhang M, Ming Y, Guo H, Zhu Y, Yang Y, Chen S, He L, Ao X, Liu A, Zhou K, Zou L, Liu S (2021) Screening of lactic acid bacteria for their capacity to bind cypermethrin in vitro and the binding characteristics and its application. Food chem 347:129000. https://doi.org/10.1016/j.foodchem.2021.129000
[DOI:
10.1016/j.foodchem.2021.129000]
Liu F, Bai J, Huang W, Li F, Ke W, Zhang Y, Xie D, Zhang B, Guo X (2022) Characterization of a novel beta-cypermethrin-degrading strain of Lactobacillus pentosus 3–27 and its effects on bioremediation and the bacterial community of contaminated alfalfa silage. J Hazard Mater 423(Pt A):127101. https://doi.org/10.1016/j.jhazmat.2021.127101
[DOI:
10.1016/j.jhazmat.2021.127101]
Sharma J, Satya S, Kumar V, Tewary DK (2005) Dissipation of pesticides during bread-making. Chem Health Saf 12(1):17–22. https://doi.org/10.1016/j.chs.2004.08.003
[DOI:
10.1016/j.chs.2004.08.003]
Uygun U, Senoz B, Koksel H (2008) Dissipation of organophosphorus pesticides in wheat during pasta processing. Food chem 109(2):355–360. https://doi.org/10.1016/j.foodchem.2007.12.048
[DOI:
10.1016/j.foodchem.2007.12.048]
Abioye OP, Ija UJJ, Aransiola SA, Auta SH, Ojeba MI (2021) Bioremediation of toxic pesticides in soil using microbial products. In: Prasad R, Nayak SC, Kharwar RN, Dubey NK (Eds.), Mycoremediation and environmental sustainability: Vol. 3, Springer International Publishing, pp 1–34. https://doi.org/10.1007/978-3-030-54422-5_1
Guerrero Ramírez JR, Ibarra Muñoz LA, Balagurusamy N, Frías Ramírez JE, Alfaro Hernández L, Carrillo Campos J (2023) Microbiology and biochemistry of pesticides biodegradation. Int J Mol Sci 24(21):15969. https://doi.org/10.3390/ijms242115969
[DOI:
10.3390/ijms242115969]
Buratti FM, Testai E (2005) Malathion detoxification by human hepatic carboxylesterases and its inhibition by isomalathion and other pesticides. J Biochem Mol Toxicol 19(6):406–414. https://doi.org/10.1002/jbt.20106
[DOI:
10.1002/jbt.20106]
Weston DP, Amweg EL (2007) Whole-sediment toxicity identification evaluation tools for pyrethroid insecticides: II esterase addition. Environ Toxicol Chem 26(11):2397–2404. https://doi.org/10.1897/07-018r.1
[DOI:
10.1897/07-018r.1]
Lee JH, Lee HY, Cho DY, Kim MJ, Jung JG, Jeong EH, Haque MA, Cho KM (2021) Biodegradable properties of organophosphorus insecticides by the potential probiotic Lactobacillus plantarum WCP931 with a degrading gene (opdC). Appl Biol Chem 64(1):62. https://doi.org/10.1186/s13765-021-00632-3
[DOI:
10.1186/s13765-021-00632-3]
Yuan S, Li C, Yu H, Xie Y, Guo Y, Yao W (2021) Selective uptake determines the variation in degradation of organophosphorus pesticides by Lactobacillus plantarum. Food chem 360:130106. https://doi.org/10.1016/j.foodchem.2021.130106
[DOI:
10.1016/j.foodchem.2021.130106]
Horne I, Sutherland TD, Harcourt RL, Russell RJ, Oakeshott JG (2002) Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate. Appl Environ Microbiol 68:3371–3376. https://doi.org/10.1128/aem.68.7.3371-3376.2002
[DOI:
10.1128/aem.68.7.3371-3376.2002]
Haque MA, Hong SY, Hwang CE et al (2018) Cloning of an organophosphorus hydrolase (opdD) gene of Lactobacillus sakei WCP904 isolated from chlorpyrifos-impregnated kimchi and hydrolysis activities of its gene product for organophosphorus pesticides. Appl Biol Chem 61:643–651. https://doi.org/10.1007/s13765-018-0397-x
[DOI:
10.1007/s13765-018-0397-x]
Zhang Y, Geng Y, Li S, Shi T, Ma X, Hua R, Fang L (2023) Efficient knocking out of the organophosphorus insecticides degradation gene opdB in Cupriavidus nantongensis X1T via CRISPR/Cas9 with Red System. Int J Mol Sci 24(6):6003. https://doi.org/10.3390/ijms24066003
[DOI:
10.3390/ijms24066003]
Aubert SD, Li Y, Raushel FM (2004) Mechanism for the hydrolysis of organophosphates by the bacterial phosphotriesterase. Biochemistry 43(19):5707–5715. https://doi.org/10.1021/bi0497805
[DOI:
10.1021/bi0497805]
Chmiel JA, Daisley BA, Pitek AP, Thompson GJ, Reid G (2020) Understanding the effects of sublethal pesticide exposure on honey bees: a role for probiotics as mediators of environmental stress. Front Ecol Evol 8. https://doi.org/10.3389/fevo.2020.00022
Ptaszyńska AA, Borsuk G, Zdybicka-Barabas A, Cytryńska M, Małek W (2016) Are commercial probiotics and prebiotics effective in the treatment and prevention of honeybee nosemosis C? Parasitol Res 115(1):397–406. https://doi.org/10.1007/s00436-015-4761-z
[DOI:
10.1007/s00436-015-4761-z]
Borges D, Guzman-Novoa E, Goodwin PH (2021) Effects of prebiotics and probiotics on honey bees (Apis mellifera) infected with the microsporidian parasite Nosema ceranae. Microorganisms 9(3):481. https://doi.org/10.3390/microorganisms9030481
[DOI:
10.3390/microorganisms9030481]
Wang H, Liu C, Liu Z, Wang Y, Ma L, Xu B (2020) The different dietary sugars modulate the composition of the gut microbiota in honeybee during overwintering. BMC Microbiol 20(1):61. https://doi.org/10.1186/s12866-020-01726-6
[DOI:
10.1186/s12866-020-01726-6]
García-Vicente EJ, Martín M, Rey-Casero I, Pérez A, Martínez R, Bravo M, Alonso JM, Risco D (2023) Effect of feed supplementation with probiotics and postbiotics on strength and health status of honey bee (Apis mellifera) hives during late spring. Res Vet Sci 159:237–243. https://doi.org/10.1016/j.rvsc.2023.05.001
[DOI:
10.1016/j.rvsc.2023.05.001]
Johnson BR, Synk W, Jasper WC, Müssen E (2014) Effects of high fructose corn syrup and probiotics on growth rates of newly founded honey bee colonies. J Apic Res 53:165–170. https://doi.org/10.3896/IBRA.1.53.1.18
[DOI:
10.3896/IBRA.1.53.1.18]
Corby-Harris V, Maes P, Anderson KE (2014) The bacterial communities associated with honeybee (Apis mellifera) foragers. PLoS One 9(4):e95056. https://doi.org/10.1371/journal.pone.0095056
[DOI:
10.1371/journal.pone.0095056]
Ricigliano VA, Williams ST, Oliver R (2022) Effects of different artificial diets on commercial honeybee colony performance, health biomarkers, and gut microbiota. BMC Vet Res 18(1):1–14. https://doi.org/10.1186/s12917-022-03151-5
[DOI:
10.1186/s12917-022-03151-5]
Szymaś B, Łangowska A, Kazimierczak-Baryczko M (2012) Histological structure of the midgut of honey bees (Apis mellifera) fed pollen substitutes fortified with probiotics. J Apicult Sci 56(1):5–12. https://doi.org/10.2478/v10289-012-0001-2
[DOI:
10.2478/v10289-012-0001-2]
Huang SK, Ye KT, Huang WF, Ying BH, Su X, Lin LH, Li JH, Chen YP, Li JL, Bao XL, Hu JZ (2018) Influence of feeding type and Nosema ceranae infection on the gut microbiota of Apis cerana workers. mSystems 3. https://doi.org/10.1128/mSystems.00177-18
Daisley BA, Pitek AP, Chmiel JA, Al KF, Chernyshova AM, Faragalla KM, Burton JP, Thompson GJ, Reid G (2020) Novel probiotic approach to counter Paenibacillus larvae infection in honey bees. ISME J 14(2):476–491. https://doi.org/10.1038/s41396-019-0541-6
[DOI:
10.1038/s41396-019-0541-6]
Daisley BA, Pitek AP, Torres C, Lowery R, Adair BA, Al KF, Niño B, Burton JP, Allen-Vercoe E, Thompson GJ, Reid G, Niño E (2023) Delivery mechanism can enhance probiotic activity against honey bee pathogens. ISME J 17:1382–1395. https://doi.org/10.1038/s41396-023-01422-z
[DOI:
10.1038/s41396-023-01422-z]
Liao CH, Shollenberger LM (2003) Survivability and long-term preservation of bacteria in water and in phosphate-buffered saline. Lett Appl Microbiol 37(1):45–50. https://doi.org/10.1046/j.1472-765x.2003.01345.x
[DOI:
10.1046/j.1472-765x.2003.01345.x]
Arredondo D, Añón G, Campá J, Harriet J, Castelli L, Zunino P, Antúnez K (2023) Supplementation of honey bee production colonies with a native beneficial microbe mixture. Benef Microbes 14(4):385–400. https://doi.org/10.1163/18762891-20220099
[DOI:
10.1163/18762891-20220099]
Pinto GDA, Castro IM, Miguel MAL, Koblitz MGB (2019) Lactic acid bacteria: promising technology for organophosphate degradation in food: a pilot study. LWT 110:353–359. https://doi.org/10.1016/j.lwt.2019.02.037
[DOI:
10.1016/j.lwt.2019.02.037]