Rachasak Boonhok, Wilaiwan Senghoi, Suthinee Sangkanu, Chooi Ling Lim, Matsayapan Pudla, Maria de Lourdes Pereira, Polrat Wilairatana, Tooba Mahboob, Md Atiar Rahman, Pongsak Utaisincharoen, Poonsit Hiransai, Veeranoot Nissapatorn
Noncanonical autophagy including unconventional protein secretion has been extensively studied. Our work focused on a leaderless IL-1β protein secretion from human macrophage in response to components, culture supernatant (CS) and cell lysate (CL), as well as its association with macrophage autophagy. Phorbol 12-myristate 13-acetate (PMA)-induced THP-1 macrophages were treated with components of pathogenic (ATCC50739) and nonpathogenic (ATCC30010) strains in vitro. The data showed that treatment resulted in low IL-1β secretion from macrophages. In addition, CL of both strains was able to upregulate autophagy-related (Atg) protein 8, an autophagy marker, whereas CS downregulated Atg8 expression. We further manipulated autophagy and found that autophagy induction by starvation diminished IL-1β secretion while autophagy inhibition by 3-methyladenine (3MA) increased IL-1β secretion. Interestingly, in the presence of components either under starvation or 3MA treatment, IL-1β secretion was significantly reduced. Transcriptional expression of other ATG genes, i.e., ATG6, ATG7, and ATG5, were investigated and showed that their mRNA expression was maintained at the basal level under CS or CL treatment. Inflammasome-related genes, NLRP3 and CASPASE1, were upregulated following 50739 CS treatment but not in 50739 CL-treated condition. However, both conditions were able to increase IL-1β mRNA expression. TEM micrographs revealed that 3MA treatment induced the formation of large vacuoles and accumulation of autophagosome at the edge of THP-1 macrophages. However, the number and size of their structures were declined in the presence of 50739 CS with 3MA. Furthermore, immunofluorescence staining demonstrated the association between Atg8/LC3 and IL-1β expression, where downregulation of Atg8 by 50739 CS led to the upregulation of IL-1β. Altogether, the data indicate that can manipulate macrophage autophagy, thereby controlling low IL-1β secretion. The expression of autophagy- and inflammasome-related genes also indicates multiple mechanisms in IL-1β secretion in response to components. However, further characterization of Atg proteins and investigations into other intracellular pathways or defense mechanisms are needed to fully understand the unconventional secretion of IL-1β in macrophages. This knowledge could eventually lead to the development of innovative therapeutic strategies against infection by modulating autophagy or macrophage responses.
J Immunol. 2011 Sep 1;187(5):2748-54
[PMID:
21804020]
Cytokine. 2018 Dec;112:27-31
[PMID:
30145061]
J Immunol. 2024 Apr 1;212(7):1161-1171
[PMID:
38372637]
Eur J Paediatr Neurol. 2001;5 Suppl A:11-9
[PMID:
11588980]
Invest Ophthalmol Vis Sci. 2006 Mar;47(3):1056-62
[PMID:
16505041]
Mol Med Rep. 2018 Mar;17(3):4777-4784
[PMID:
29328417]
Thorax. 2018 Jun;73(6):546-556
[PMID:
29079611]
Jpn J Clin Oncol. 2013 Dec;43(12):1261-8
[PMID:
24186908]
Clin Microbiol Rev. 2003 Apr;16(2):273-307
[PMID:
12692099]
Cell Host Microbe. 2009 Jun 18;5(6):527-49
[PMID:
19527881]
Int J Parasitol Drugs Drug Resist. 2017 Dec;7(3):328-336
[PMID:
28918001]
J Immunol. 1998 Oct 15;161(8):4122-8
[PMID:
9780184]
Cell Death Differ. 2016 Nov 1;23(11):1815-1826
[PMID:
27662364]
Curr Med Chem. 2019;26(30):5711-5726
[PMID:
29745319]
J Exp Med. 1993 Aug 1;178(2):567-77
[PMID:
8101861]
Semin Cell Dev Biol. 2018 Nov;83:36-41
[PMID:
29580970]
PLoS Negl Trop Dis. 2019 May 16;13(5):e0007352
[PMID:
31095564]
Mol Cell Biol. 2009 May;29(10):2570-81
[PMID:
19273585]
Trends Parasitol. 2013 Apr;29(4):181-7
[PMID:
23433689]
J Immunol. 2017 Apr 15;198(8):3205-3213
[PMID:
28258192]
Parasite Immunol. 2019 Feb;41(2):e12612
[PMID:
30578557]
J Biol Chem. 2011 Mar 18;286(11):9587-97
[PMID:
21228274]
Parasit Vectors. 2018 Jan 2;11(1):1
[PMID:
29291748]
Cell. 2010 Mar 19;140(6):805-20
[PMID:
20303872]
EMBO J. 2017 Jul 3;36(13):1811-1836
[PMID:
28596378]
Cytokine Growth Factor Rev. 2011 Aug;22(4):189-95
[PMID:
22019906]
Cell Tissue Res. 2015 Aug;361(2):541-55
[PMID:
25684031]
PLoS Pathog. 2009 Aug;5(8):e1000559
[PMID:
19696895]
Int Immunol. 2010 Apr;22(4):245-57
[PMID:
20181656]
Autophagy. 2013 Mar;9(3):424-5
[PMID:
23321721]
Immunol Rev. 2018 Jan;281(1):8-27
[PMID:
29247995]
Cell. 2011 Nov 11;147(4):728-41
[PMID:
22078875]
Nat Rev Immunol. 2017 Dec 22;18(1):2-3
[PMID:
29269767]
Front Microbiol. 2021 Jan 12;11:595080
[PMID:
33510719]
Curr Opin Cell Biol. 2015 Aug;35:106-16
[PMID:
25988755]
J Clin Invest. 2010 Jan;120(1):127-41
[PMID:
20038797]
Front Immunol. 2019 Feb 05;10:102
[PMID:
30804935]
Cell Discov. 2020 May 5;6:23
[PMID:
32377373]
PLoS Pathog. 2010 Feb 26;6(2):e1000661
[PMID:
20195505]
Pathogens. 2020 Mar 16;9(3):
[PMID:
32188120]
J Eukaryot Microbiol. 1998 Jul-Aug;45(4):452-8
[PMID:
9703682]
Nanomaterials (Basel). 2017 Oct 17;7(10):
[PMID:
29039753]
Cell Death Differ. 2011 Apr;18(4):571-80
[PMID:
21311563]
Front Immunol. 2020 Oct 09;11:591803
[PMID:
33163006]
Microb Pathog. 2000 May;28(5):313-8
[PMID:
10799281]
Int J Mol Sci. 2021 Jan 27;22(3):
[PMID:
33514026]
Front Immunol. 2013 Jul 08;4:177
[PMID:
23847618]
J Allergy Clin Immunol. 2016 Jul;138(1):28-36
[PMID:
27373323]
Nat Commun. 2015 Sep 21;6:8283
[PMID:
26387534]
Autophagy. 2017 Jun 3;13(6):1084-1085
[PMID:
28368721]
Infect Immun. 2013 Sep;81(9):3463-71
[PMID:
23836818]
Front Immunol. 2022 Dec 22;13:958098
[PMID:
36618426]
Infect Immun. 2017 May 23;85(6):
[PMID:
28348053]
J Mol Biol. 2018 Jan 19;430(2):174-192
[PMID:
29162504]
Arch Immunol Ther Exp (Warsz). 2002;50(1):53-9
[PMID:
11916309]
Cells. 2022 Dec 02;11(23):
[PMID:
36497153]
Mol Biol Cell. 1999 May;10(5):1463-75
[PMID:
10233156]
Microbes Infect. 2006 Apr;8(5):1400-5
[PMID:
16697233]
J Cell Sci. 2012 Nov 15;125(Pt 22):5251-5
[PMID:
23377655]
Korean J Parasitol. 2019 Aug;57(4):341-357
[PMID:
31533401]
Biol Pharm Bull. 2016;39(5):665-73
[PMID:
27150140]
EMBO J. 2017 Jan 4;36(1):42-60
[PMID:
27932448]
Int J Biol Sci. 2019 Jun 2;15(8):1571-1581
[PMID:
31360100]
Genes (Basel). 2019 Aug 14;10(8):
[PMID:
31416298]
PeerJ. 2022 Jul 4;10:e13657
[PMID:
35811814]
Int J Mol Sci. 2019 Jul 06;20(13):
[PMID:
31284572]
Mol Cell Biol. 2006 Dec;26(24):9220-31
[PMID:
17030611]
Clin Microbiol Infect. 2011 Apr;17(4):603-9
[PMID:
20456457]
FEMS Microbiol Rev. 2006 Jul;30(4):564-95
[PMID:
16774587]
Nat Rev Immunol. 2016 Jul;16(7):407-20
[PMID:
27291964]
Cell Biol Int. 2021 May;45(5):1060-1071
[PMID:
33448518]
Lung. 2019 Dec;197(6):687-698
[PMID:
31732808]
Proc Natl Acad Sci U S A. 2016 Jun 21;113(25):E3519-28
[PMID:
27185909]
PLoS One. 2017 Apr 12;12(4):e0175336
[PMID:
28403163]
J Cell Sci. 2014 Jun 1;127(Pt 11):2383-90
[PMID:
24829146]
EMBO J. 2011 Nov 08;30(23):4701-11
[PMID:
22068051]
Immunity. 2001 Nov;15(5):825-35
[PMID:
11728343]
Biomed Pharmacother. 2021 May;137:111271
[PMID:
33561643]
J Mol Biol. 2022 Feb 28;434(4):167378
[PMID:
34838807]
Annu Rev Immunol. 2009;27:519-50
[PMID:
19302047]
EMBO Mol Med. 2021 Dec 7;13(12):e14824
[PMID:
34725936]
J Immunol Res. 2018 Jul 2;2018:2790627
[PMID:
30057915]
Cytokine. 2015 Nov;76(1):25-37
[PMID:
26185894]