Emerging phytochemical-based nanocarriers: redefining the perspectives of breast cancer therapy.

Gulshan Sharma, Rohil Panwar, Sanskriti Saini, Hardeep Singh Tuli, Karan Wadhwa, Rakesh Pahwa
Author Information
  1. Gulshan Sharma: Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
  2. Rohil Panwar: Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
  3. Sanskriti Saini: Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
  4. Hardeep Singh Tuli: Department of Bio-Science and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India.
  5. Karan Wadhwa: Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India. karanwdhw1@gmail.com. ORCID
  6. Rakesh Pahwa: Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India. rakesh_pahwa2407@yahoo.co.in.

Abstract

Breast cancer is recognized as the most prevalent condition impacting women globally, despite several advancements in diagnosis and treatment. Existing therapeutic interventions including surgical procedures, radiation therapy, and chemotherapy often produce harmful effects on healthy tissues, trigger chemo-resistance, and augment the risk of relapse. In response to several unmet challenges, substantial research has been conducted to explore the therapeutic potential of natural compounds for breast cancer therapy. Progress in phytochemistry and pharmacology has facilitated the identification of diverse herbal bioactives with favorable safety profiles and multi-target mechanisms of action against breast cancer cells. Several phytochemicals like flavonoids and tannins have shown significant anticancer potential against breast cancer in diverse preclinical models. However, challenges like limited cellular absorption, low water solubility, and high molecular weight hinder their effective translation into clinical applications. Therefore, the development of novel therapies is imperative for overcoming these hurdles in breast cancer treatment effectively. Nanotechnology has reflected considerable perspective in tackling diverse challenges by encapsulating phytoconstituents within various nanocarriers including polymeric nanoparticles, lipidic nanoparticles, nanoemulsions, nanogels, gold nanoparticles, and silver nanoparticles. This manuscript emphasizes the recent advancements in phytochemical-loaded nanocarriers efficiently tailored for breast cancer therapy along with patents, current challenges, and future perspectives in this avenue.

Keywords

References

Abdel-Hakeem MA, Mongy S, Hassan B et al (2021) Curcumin-loaded chitosan-protamine nanoparticles revealed antitumor activity via suppression of NF-κB, proinflammatory cytokines, and Bcl-2 gene expression in the breast cancer cells. J Pharm Sci 110:3298–3305. https://doi.org/10.1016/j.xphs.2021.06.004 [DOI: 10.1016/j.xphs.2021.06.004]
Abd-Ellatef GEF, Gazzano E, Chirio D et al (2020) Curcumin-loaded solid lipid nanoparticles bypass p-glycoprotein mediated doxorubicin resistance in triple-negative breast cancer cells. Pharmaceutics 12:96. https://doi.org/10.3390/pharmaceutics12020096 [DOI: 10.3390/pharmaceutics12020096]
Abu Samaan TM, Samec M, Liskova A, Kubatka P, Büsselberg D (2019) Paclitaxel’s mechanistic and clinical effects on breast cancer. Biomolecules 9:789. https://doi.org/10.3390/biom9120789 [DOI: 10.3390/biom9120789]
Afarin R, Ahmadpour F, Hatami M, Monjezi S, Igder S (2024) Combination of etoposide and quercetin-loaded solid lipid nanoparticles potentiates apoptotic effects on MDA-MB-231 breast cancer cells. Heliyon 10:e31925. https://doi.org/10.1016/j.heliyon.2024.e31925 [DOI: 10.1016/j.heliyon.2024.e31925]
Ahmad A (2019) Breast cancer metastasis and drug resistance: challenges and progress. Ahmad (Ed) - Advances in Experimental Medicine and Biology. Springer. https://doi.org/10.1007/978-3-030-20301-6
Ahmed HM, Nabavi S, Behzad S (2021) Herbal drugs and natural products in the light of nanotechnology and nanomedicine for developing drug formulations. Mini Rev Med Chem 21:302–313. https://doi.org/10.2174/1389557520666200916143240 [DOI: 10.2174/1389557520666200916143240]
Ahmed MB, Islam SU, Alghamdi AAA, Kamran M, Ahsan H, Lee YS (2022) Phytochemicals as chemo-preventive agents and signaling molecule modulators: current role in cancer therapeutics and inflammation. Int J Mol Sci 23:15765. https://doi.org/10.3390/ijms232415765 [DOI: 10.3390/ijms232415765]
Akbarzadeh I, Shayan M, Bourbour M et al (2021) Preparation, optimization and in-vitro evaluation of curcumin-loaded niosome@ calcium alginate nanocarrier as a new approach for breast cancer treatment. Biology (Basel) 10:173. https://doi.org/10.3390/biology10030173 [DOI: 10.3390/biology10030173]
Alhmoud JF, Woolley JF, Al Moustafa AE, Malki MI (2020) DNA damage/repair management in cancers. Cancers 12:1050. https://doi.org/10.3390/cancers12041050 [DOI: 10.3390/cancers12041050]
Ali H, Rizi Y, Shin DH, Rizi SY (2022) Polymeric nanoparticles in cancer chemotherapy: a narrative review. Iran J Public Health 51:226–239
Alshareeda AT, Nur Khatijah MZ, Al-Sowayan BS (2023) Nanotechnology: a revolutionary approach to prevent breast cancer recurrence. Asian J Surg 46:13–17. https://doi.org/10.1016/j.asjsur.2022.03.002 [DOI: 10.1016/j.asjsur.2022.03.002]
Altamimi MA, Hussain A, Alrajhi M et al (2021) Luteolin-loaded elastic liposomes for transdermal delivery to control breast cancer: in vitro and ex vivo evaluations. Pharmaceuticals 14:1143. https://doi.org/10.3390/ph14111143 [DOI: 10.3390/ph14111143]
Ameer SF, Mohamed MY, Elzubair QA, Sharif EAM, Ibrahim WN (2024) Curcumin as a novel therapeutic candidate for cancer: can this natural compound revolutionize cancer treatment? Front Oncol 14:1438040. https://doi.org/10.3389/fonc.2024.1438040 [DOI: 10.3389/fonc.2024.1438040]
Aparajay P, Dev A (2022) Functionalized niosomes as a smart delivery device in cancer and fungal infection. Eur J Pharm Sci 168:106052. https://doi.org/10.1016/j.ejps.2021.106052 [DOI: 10.1016/j.ejps.2021.106052]
Apolinário AC, Hauschke L, Nunes JR et al (2021) Design of multifunctional ethosomes for topical fenretinide delivery and breast cancer chemoprevention. Colloids Surf A Physicochem Eng Asp 623:126745. https://doi.org/10.1016/j.colsurfa.2021.126745 [DOI: 10.1016/j.colsurfa.2021.126745]
Armstrong N, Ryder S, Forbes C et al (2019) A systematic review of the international prevalence of BRCA mutation in breast cancer. Clin Epidemiol 11:543–561. https://doi.org/10.2147/CLEP.S206949 [DOI: 10.2147/CLEP.S206949]
Asghari N, Houshmand S, Rigi A et al (2023) PEGylated cationic nano-niosomes formulation containing herbal medicine curcumin for drug delivery to MCF-7 breast cancer cells. Eurasian Chem Commun 5:556–568. https://doi.org/10.22034/ecc.2023.381375.1592 [DOI: 10.22034/ecc.2023.381375.1592]
Askar MA, El Shawi OE, Abou Zaid OAR et al (2021) Breast cancer suppression by curcumin-naringenin-magnetic-nano-particles: in vitro and in vivo studies. Tumour Biol 43:225–247. https://doi.org/10.3233/TUB-211506 [DOI: 10.3233/TUB-211506]
Balakrishnan S, Bhat FA, Raja Singh P et al (2016) Gold nanoparticle–conjugated quercetin inhibits epithelial–mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Prolif 49:678–697. https://doi.org/10.1111/cpr.12296 [DOI: 10.1111/cpr.12296]
Banyal A, Tiwari S, Sharma A et al (2023) Vinca alkaloids as a potential cancer therapeutics: recent update and future challenges. 3 Biotech 13:211. https://doi.org/10.1007/s13205-023-03636-6 [DOI: 10.1007/s13205-023-03636-6]
Bayat Mokhtari R, Homayouni TS, Baluch N et al (2017) Combination therapy in combating cancer. Oncotarget 8:38022–38043 [DOI: 10.18632/oncotarget.16723]
Bayón-Cordero L, Alkorta I, Arana L (2019) Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials 9:474. https://doi.org/10.3390/nano9030474 [DOI: 10.3390/nano9030474]
Behroozaghdam M, Dehghani M, Zabolian A et al (2022) Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action. Cell Mol Life Sci 79:539. https://doi.org/10.1007/s00018-022-04551-4 [DOI: 10.1007/s00018-022-04551-4]
Bharmoria P, Bisht M, Gomes MC et al (2021) Protein-olive oil-in-water nanoemulsions as encapsulation materials for curcumin acting as anticancer agent towards MDA-MB-231 cells. Sci Rep 11:9099. https://doi.org/10.1038/s41598-021-88482-3 [DOI: 10.1038/s41598-021-88482-3]
Bieche I, Lidereau R (1995) Genetic alterations in breast cancer. Genes, Chromosomes and Cancer 14:227–251. https://doi.org/10.1002/gcc.2870140402 [DOI: 10.1002/gcc.2870140402]
Bose P, Priyam A, Kar R, Pattanayak SP (2020) Quercetin loaded folate targeted plasmonic silver nanoparticles for light activated chemo-photothermal therapy of DMBA induced breast cancer in Sprague Dawley rats. RSC Adv 10:31961–31978. https://doi.org/10.1039/d0ra05793b [DOI: 10.1039/d0ra05793b]
Bray F, Laversanne M, Sung H et al (2024) Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 74:229–263. https://doi.org/10.3322/caac.21834 [DOI: 10.3322/caac.21834]
Byler S, Goldgar S, Heerboth S et al (2014) Genetic and epigenetic aspects of breast cancer progression and therapy. Anticancer Res 34:1071–1077 [PMID: 24596345]
Cavalcante de Freitas PG, Rodrigues Arruda B, Araújo Mendes MG et al (2023) Resveratrol-loaded polymeric nanoparticles: the effects of D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) on physicochemical and biological properties against breast cancer in vitro and in vivo. Cancers (Basel) 15:2802. https://doi.org/10.3390/cancers15102802 [DOI: 10.3390/cancers15102802]
Chaurasia M, Singh R, Sur S, Flora SJS (2023) A review of FDA approved drugs and their formulations for the treatment of breast cancer. Front Pharmacol 14:1184472. https://doi.org/10.3389/fphar.2023.1184472 [DOI: 10.3389/fphar.2023.1184472]
Chavda VP, Vihol D, Mehta B et al (2022) Phytochemical-loaded liposomes for anticancer therapy: an updated review. Nanomedicine 17:547–568. https://doi.org/10.2217/nnm-2021-0463 [DOI: 10.2217/nnm-2021-0463]
Chavda VP, Nalla LV, Balar P et al (2023a) Advanced phytochemical-based nanocarrier systems for the treatment of breast cancer. Cancers 15:1023. https://doi.org/10.3390/cancers15041023 [DOI: 10.3390/cancers15041023]
Chavda VP, Vuppu S, Bezbaruah R et al (2023b) Phytochemical loaded nanovehicles of biopolymer for breast cancer: a systemic review. Clin Complement MedPharmacol 3:100114. https://doi.org/10.1016/j.ccmp.2023.100114 [DOI: 10.1016/j.ccmp.2023.100114]
Chen H, Zhao Y, Wang H, Nie G, Nan K (2012) Co-delivery strategies based on multifunctional nanocarriers for cancer therapy. Curr Drug Metab 13:1087–1096. https://doi.org/10.2174/138920012802849995 [DOI: 10.2174/138920012802849995]
Cheng T, Wu Y, Liu Z et al (2022) CDKN2A-mediated molecular subtypes characterize the hallmarks of tumor microenvironment and guide precision medicine in triple-negative breast cancer. Front Immunol 13:970950. https://doi.org/10.3389/fimmu.2022.970950 [DOI: 10.3389/fimmu.2022.970950]
Choudhari AS, Mandave PC, Deshpande M et al (2020) Phytochemicals in cancer treatment: from preclinical studies to clinical practice. Front Pharmacol 10:1614. https://doi.org/10.3389/fphar.2019.01614 [DOI: 10.3389/fphar.2019.01614]
Cook MT (2018) Mechanism of metastasis suppression by luteolin in breast cancer. Breast Cancer: Targets and Therapy 10:89–100. https://doi.org/10.2147/BCTT.S144202 [DOI: 10.2147/BCTT.S144202]
Cui T, Zhang S, Sun H (2017) Co-delivery of doxorubicin and pH-sensitive curcumin prodrug by transferrin-targeted nanoparticles for breast cancer treatment. Oncol Rep 37:1253–1260. https://doi.org/10.3892/or.2017.5345 [DOI: 10.3892/or.2017.5345]
Deshmukh PK, Mutha RE, Surana SJ (2021) Electrostatic deposition assisted preparation, characterization and evaluation of chrysin liposomes for breast cancer treatment. Drug Dev Ind Pharm 47:809–819. https://doi.org/10.1080/03639045.2021.1934873 [DOI: 10.1080/03639045.2021.1934873]
Dewi MK, Chaerunisaa AY, Muhaimin M, Joni IM (2022) Improved activity of herbal medicines through nanotechnology. Nanomaterials 12:1–19. https://doi.org/10.3390/nano12224073 [DOI: 10.3390/nano12224073]
Djayanti K, Maharjan P, Cho KH et al (2023) Mesoporous silica nanoparticles as a potential nanoplatform: therapeutic applications and considerations. Int J Mol Sci 24:6349. https://doi.org/10.3390/ijms24076349 [DOI: 10.3390/ijms24076349]
Dubey SK, Kali M, Hejmady S et al (2021) Recent advances of dendrimers as multifunctional nano-carriers to combat breast cancer. Eur J Pharm Sci 164:105890. https://doi.org/10.1016/j.ejps.2021.105890 [DOI: 10.1016/j.ejps.2021.105890]
Eftekhari RB, Maghsoudnia N, Samimi S, Zamzami A, Dorkoosh FA (2019) Co-delivery nanosystems for cancer treatment: a review. Pharm Nanotechnol 7:90–112. https://doi.org/10.2174/2211738507666190321112237 [DOI: 10.2174/2211738507666190321112237]
Esfandiarpour-Boroujeni S, Bagheri-Khoulenjani S, Mirzadeh H, Amanpour S (2017) Fabrication and study of curcumin loaded nanoparticles based on folate-chitosan for breast cancer therapy application. Carbohydr Polym 168:14–21. https://doi.org/10.1016/j.carbpol.2017.03.031 [DOI: 10.1016/j.carbpol.2017.03.031]
Ezike TC, Okpala US, Onoja UL et al (2023) Advances in drug delivery systems, challenges and future directions. Heliyon 9:e17488. https://doi.org/10.1016/j.heliyon.2023.e17488 [DOI: 10.1016/j.heliyon.2023.e17488]
Ezzati M, Yousefi B, Velaei K, Safa A (2020) A review on anti-cancer properties of quercetin in breast cancer. Life Sci 248:117463. https://doi.org/10.1016/j.lfs.2020.117463 [DOI: 10.1016/j.lfs.2020.117463]
Fang L, Zhou H, Cheng L et al (2023) The application of mesoporous silica nanoparticles as a drug delivery vehicle in oral disease treatment. Front Cell Infect Microbiol 13:1124411. https://doi.org/10.3389/fcimb.2023.1124411 [DOI: 10.3389/fcimb.2023.1124411]
Farabegoli F, Granja A, Magalhães J et al (2022) Epigallocatechin-3-gallate delivered in nanoparticles increases cytotoxicity in three breast carcinoma cell lines. ACS Omega 7:41872–41881. https://doi.org/10.1021/acsomega.2c01829 [DOI: 10.1021/acsomega.2c01829]
Farzin A, Etesami SA, Quint J et al (2020) Magnetic nanoparticles in cancer therapy and diagnosis. Adv Healthc Mater 9:1–29. https://doi.org/10.1002/adhm.201901058 [DOI: 10.1002/adhm.201901058]
Feldman NB, Gromovykh TI, Sedyakina NE et al (2018) Cytotoxic and antitumor activity of liposomal silibinin. Bionanoscience 8:971–976. https://doi.org/10.1007/s12668-018-0556-x [DOI: 10.1007/s12668-018-0556-x]
Fernández-García R, Lalatsa A, Statts L et al (2020) Transferosomes as nanocarriers for drugs across the skin: quality by design from lab to industrial scale. Int J Pharm 573:118817. https://doi.org/10.1016/j.ijpharm.2019.118817 [DOI: 10.1016/j.ijpharm.2019.118817]
Fisusi FA, Akala EO (2019) Drug combinations in breast cancer therapy. Pharm Nanotechnol 7:3–23. https://doi.org/10.2174/2211738507666190122111224 [DOI: 10.2174/2211738507666190122111224]
Fu Y, Chang H, Peng X et al (2014) Resveratrol inhibits breast cancer stem-like cells and induces autophagy via suppressing Wnt/β-catenin signaling pathway. PLoS One 9:e102535. https://doi.org/10.1371/journal.pone.0102535 [DOI: 10.1371/journal.pone.0102535]
Gadag S, Narayan R, Sabhahit JN et al (2022) Transpapillary iontophoretic delivery of resveratrol loaded transfersomes for localized delivery to breast cancer. Biomater Adv 140:213085. https://doi.org/10.1016/j.bioadv.2022.213085 [DOI: 10.1016/j.bioadv.2022.213085]
Gajbhiye KR, Salve R, Narwade M et al (2023) Lipid polymer hybrid nanoparticles: a custom-tailored next-generation approach for cancer therapeutics. Mol Cancer 22:160. https://doi.org/10.1186/s12943-023-01849-0 [DOI: 10.1186/s12943-023-01849-0]
Gao Q, Feng J, Liu W et al (2022) Opportunities and challenges for co-delivery nanomedicines based on combination of phytochemicals with chemotherapeutic drugs in cancer treatment. Adv Drug Deliv Rev 188:114445. https://doi.org/10.1016/j.addr.2022.114445 [DOI: 10.1016/j.addr.2022.114445]
Gao J, Kumari A, Zeng XA et al (2023) Coating of chitosan on poly D, L-lactic-co-glycolic acid thymoquinone nanoparticles enhances the anti-tumor activity in triple-negative breast cancer. Front Chem 11:1044953. https://doi.org/10.3389/fchem.2023.1044953 [DOI: 10.3389/fchem.2023.1044953]
Garg V, Singh H, Bimbrawh S et al (2016) Ethosomes and transfersomes: principles, perspectives and practices. Curr Drug Deliv 14:613–633. https://doi.org/10.2174/1567201813666160520114436 [DOI: 10.2174/1567201813666160520114436]
Gheybi F, Alavizadeh SH, Rezayat SM, Zendehdel E, Jaafari MR (2019) Chemotherapeutic activity of silymarin combined with doxorubicin liposomes in 4T1 breast cancer cells. Nanomed Res J 4:29–34. https://doi.org/10.22034/NMRJ.2019.01.005 [DOI: 10.22034/NMRJ.2019.01.005]
Ghosh S, Dutta S, Sarkar A et al (2021) Targeted delivery of curcumin in breast cancer cells via hyaluronic acid modified mesoporous silica nanoparticle to enhance anticancer efficiency. Colloids Surf B Biointerfaces 197:111404. https://doi.org/10.1016/j.colsurfb.2020.111404 [DOI: 10.1016/j.colsurfb.2020.111404]
Giaquinto AN, Sung H, Newman LA et al (2024) Breast cancer statistics 2024. CA Cancer J Clin 74:477–495. https://doi.org/10.3322/caac.21863 [DOI: 10.3322/caac.21863]
Gilani SJ, Bin-Jumah M, Rizwanullah M et al (2021) Chitosan coated luteolin nanostructured lipid carriers: optimization, in vitro-ex vivo assessments and cytotoxicity study in breast cancer cells. Coatings 11:1–16. https://doi.org/10.3390/coatings11020158 [DOI: 10.3390/coatings11020158]
Gilani SJ, Bin-Jumah MN, Fatima F (2023) Development of statistically optimized piperine-loaded polymeric nanoparticles for breast cancer: in vitro evaluation and cell culture studies. ACS Omega 8:44183–44194. https://doi.org/10.1021/acsomega.3c06605 [DOI: 10.1021/acsomega.3c06605]
Giri TK (2018) Breaking the barrier of cancer through liposome loaded with phytochemicals. Curr Drug Deliv 16:3–17. https://doi.org/10.2174/1567201815666180918112139 [DOI: 10.2174/1567201815666180918112139]
González-Burgos E, Gómez-Serranillos MP (2021) Vinca alkaloids as chemotherapeutic agents against breast cancer. In: Brahmchari G (Ed) Discovery and development of anti-breast cancer agents from natural products, Elsevier, New York, pp 69-101. https://doi.org/10.1016/B978-0-12-821277-6.00004-0
Gorain B, Choudhury H, Nair AB et al (2020) Theranostic application of nanoemulsions in chemotherapy. Drug Discov Today 25:1174–1188. https://doi.org/10.1016/j.drudis.2020.04.013 [DOI: 10.1016/j.drudis.2020.04.013]
Gu Y, Fei Z (2022) Mesoporous silica nanoparticles loaded with resveratrol are used for targeted breast cancer therapy. J Oncol 2022:8471331. https://doi.org/10.1155/2022/8471331 [DOI: 10.1155/2022/8471331]
Gu J, Makey KL, Tucker KB et al (2013) EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFkB, and VEGF expression. Vascular Cell 5:9. https://doi.org/10.1186/2045-824X-5-9 [DOI: 10.1186/2045-824X-5-9]
Gupta L, Sharma AK, Gothwal A et al (2017a) Dendrimer encapsulated and conjugated delivery of berberine: a novel approach mitigating toxicity and improving in vivo pharmacokinetics. Int J Pharm 528:88–99. https://doi.org/10.1016/j.ijpharm.2017.04.073 [DOI: 10.1016/j.ijpharm.2017.04.073]
Gupta VK, Singh R, Sharma B (2017b) Phytochemicals mediated signalling pathways and their implications in cancer chemotherapy: challenges and opportunities in phytochemicals based drug development: a review. Biochem Comp 5:2. https://doi.org/10.7243/2052-9341-5-2 [DOI: 10.7243/2052-9341-5-2]
Hajigholami S, Veisi Malekshahi Z, Bodaghabadi N, Najafi F, Shirzad H, Sadeghizadeh M (2018) Nano packaged tamoxifen and curcumin; effective formulation against sensitive and resistant MCF-7 Cells. Iran J Pharm Res 17:1–10 [PMID: 29755534]
Hajimehdipoor H, Tahmasvand Z, Nejad FG, Maresca M, Rajabi S (2023) Rutin promotes proliferation and orchestrates epithelial-mesenchymal transition and angiogenesis in MCF-7 and MDA-MB-231 breast cancer cells. Nutrients 15:2884. https://doi.org/10.3390/nu15132884 [DOI: 10.3390/nu15132884]
Hajipour H, Hamishehkar H, Nazari Soltan Ahmad S et al (2018) Improved anticancer effects of epigallocatechin gallate using RGD-containing nanostructured lipid carriers. Artif Cells Nanomed Biotechnol 46:283–292. https://doi.org/10.1080/21691401.2017.1423493 [DOI: 10.1080/21691401.2017.1423493]
Hammami I, Alabdallah NM, JomaaKamoun AAIM (2021) Gold nanoparticles: synthesis properties and applications. J King Saud Univ Sci 33:101560. https://doi.org/10.1016/j.jksus.2021.101560 [DOI: 10.1016/j.jksus.2021.101560]
Hasan-Abad AM, Atapour A, Sobhani-Nasab A, Motedayyen H, ArefNezhad R (2024) Plant-based anticancer compounds with a focus on breast cancer. Cancer Rep 7:e70012. https://doi.org/10.1002/cnr2.70012 [DOI: 10.1002/cnr2.70012]
Hatami M, Kouchak M, Kheirollah A et al (2023) Quercetin-loaded solid lipid nanoparticles exhibit antitumor activity and suppress the proliferation of triple-negative MDA-MB 231 breast cancer cells: implications for invasive breast cancer treatment. Mol Biol Rep 50:9417–9430. https://doi.org/10.1007/s11033-023-08848-w [DOI: 10.1007/s11033-023-08848-w]
Hatkevich T, Ramos J, Santos-Sanchez I, Patel YM (2014) A naringenin-tamoxifen combination impairs cell proliferation and survival of MCF-7 breast cancer cells. Exp Cell Res 327:331–339. https://doi.org/10.1016/j.yexcr.2014.05.017 [DOI: 10.1016/j.yexcr.2014.05.017]
Hermawan A, Ikawati M, Jenie RI et al (2021) Identification of potential therapeutic target of naringenin in breast cancer stem cells inhibition by bioinformatics and in vitro studies. Saudi Pharma J 29:12–26. https://doi.org/10.1016/j.jsps.2020.12.002 [DOI: 10.1016/j.jsps.2020.12.002]
Honarvari B, Karimifard S, Akhtari N, Mehrarya M (2022) Delivery in breast cancer treatment: in silico and in vitro study. Molecules 27:4634. https://doi.org/10.3390/molecules27144634 [DOI: 10.3390/molecules27144634]
Hong OY, Noh EM, Jang HY et al (2017) Epigallocatechin gallate inhibits the growth of MDA-MB-231 breast cancer cells via inactivation of the β-catenin signaling pathway. Oncol Lett 14:441–446. https://doi.org/10.3892/ol.2017.6108 [DOI: 10.3892/ol.2017.6108]
Hu S, Xu Y, Meng L et al (2018) Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells. Exp Ther Med 16:1266–1272. https://doi.org/10.3892/etm.2018.6345 [DOI: 10.3892/etm.2018.6345]
Huang YJ, Wang KL, Chen HY et al (2020) Protective effects of epigallocatechin gallate (EGCG) on endometrial, breast, and ovarian cancers. Biomolecules 10:1–19. https://doi.org/10.3390/biom10111481 [DOI: 10.3390/biom10111481]
Hussain A, Bourguet-Kondracki M-L, Hussain F et al (2022) The potential role of dietary plant ingredients against mammary cancer: a comprehensive review. Crit Rev Food Sci Nutr 62:2580–2605. https://doi.org/10.1080/10408398.2020.1855413 [DOI: 10.1080/10408398.2020.1855413]
Imam SS, Gilani SJ, Bin Jumah MN et al (2022) Harnessing lipid polymer hybrid nanoparticles for enhanced oral bioavailability of thymoquinone: in vitro and in vivo assessments. Polymers 14:3750. https://doi.org/10.3390/polym14183705 [DOI: 10.3390/polym14183705]
Imran M, Salehi B, Sharifi-Rad J et al (2019) Kaempferol: a key emphasis to its anticancer potential. Molecules 24:2277. https://doi.org/10.3390/molecules24122277 [DOI: 10.3390/molecules24122277]
Iyer S, Das A (2021) Responsive nanogels for anti-cancer therapy. Mater Today Proc 44:2330–2333. https://doi.org/10.1016/j.matpr.2020.12.415 [DOI: 10.1016/j.matpr.2020.12.415]
Jadia R, Kydd J, Piel B, Rai P (2018) Liposomes aid curcumin’s combat with cancer in a breast tumor model. Oncomedicine 3:94–109. https://doi.org/10.7150/oncm.27938 [DOI: 10.7150/oncm.27938]
Jakobušić Brala C, Karković Marković A, Kugić A, Torić J, Barbarić M (2023) Combination chemotherapy with selected polyphenols in preclinical and clinical studies-an update overview. Molecules 28:3746. https://doi.org/10.3390/molecules28093746 [DOI: 10.3390/molecules28093746]
Jin H, Pi J, Zhao Y et al (2017) EGFR-targeting PLGA-PEG nanoparticles as a curcumin delivery system for breast cancer therapy. Nanoscale 9:16365–16374. https://doi.org/10.1039/c7nr06898k [DOI: 10.1039/c7nr06898k]
Jivani A, Shinde RK (2024) A comprehensive review of taxane treatment in breast cancer: clinical perspectives and toxicity profiles. Cureu 16:e59266. https://doi.org/10.7759/cureus.59266 [DOI: 10.7759/cureus.59266]
Kamel AE, Fadel M, Louis D (2019) Curcumin-loaded nanostructured lipid carriers prepared using peceol and olive oil in photodynamic therapy: development and application in breast cancer cell line. Int J Nanomedicine 14:5073–5085. https://doi.org/10.2147/IJN.S210484 [DOI: 10.2147/IJN.S210484]
Kawish SM, Sharma S, Gupta P et al (2024) Nanoparticle-based drug delivery platform for simultaneous administration of phytochemicals and chemotherapeutics: emerging trends in cancer management. Part Part Sys Charact. 2400049:1–24. https://doi.org/10.1002/ppsc.202400049 [DOI: 10.1002/ppsc.202400049]
Kazi J, Sen R, Ganguly S et al (2020) Folate decorated epigallocatechin-3-gallate (EGCG) loaded PLGA nanoparticles; in-vitro and in-vivo targeting efficacy against MDA-MB-231 tumor xenograft. Int J Pharm 585:119449. https://doi.org/10.1016/j.ijpharm.2020.119449 [DOI: 10.1016/j.ijpharm.2020.119449]
Kazmi I, Al-Abbasi FA, Imam SS et al (2022a) Formulation and evaluation of apigenin-loaded hybrid nanoparticles. Pharmaceutics 14:783. https://doi.org/10.3390/pharmaceutics14040783 [DOI: 10.3390/pharmaceutics14040783]
Kazmi I, Al-Abbasi FA, Imam SS et al (2022b) Formulation of piperine nanoparticles: in vitro breast cancer cell line and in vivo evaluation. Polymers 14:1349. https://doi.org/10.3390/polym14071349 [DOI: 10.3390/polym14071349]
Kececiler-Emir C, Ilhan-Ayisigi E, Celen-Erden C et al (2021) Synthesis of resveratrol loaded hybrid silica-PAMAM dendrimer nanoparticles with emphases on inducible nitric oxide synthase and cytotoxicity. Plant Foods Hum Nutr 76:219–225. https://doi.org/10.1007/s11130-021-00897-5 [DOI: 10.1007/s11130-021-00897-5]
Khan S, Sharma A, Jain V (2023) An overview of nanostructured lipid carriers and its application in drug delivery through different routes. Adv Pharm Bull 13:446–460. https://doi.org/10.34172/apb.2023.056 [DOI: 10.34172/apb.2023.056]
Khoobchandani M, Katti KK, Karikachery AR et al (2020) New approaches in breast cancer therapy through green nanotechnology and nano-ayurvedic medicine - pre-clinical and pilot human clinical investigations. Int J Nanomedicine 15:181–197. https://doi.org/10.2147/IJN.S219042 [DOI: 10.2147/IJN.S219042]
Kim TH, Woo JS, Kim YK, Kim KH (2014) Silibinin induces cell death through reactive oxygen species-dependent downregulation of notch-1/ERK/Akt signaling in human breast cancer cells. J Pharmacol Exp Ther 349:268–278. https://doi.org/10.1124/jpet.113.207563 [DOI: 10.1124/jpet.113.207563]
Kim A, Mo K, Kwon H et al (2023) Epigenetic regulation in breast cancer: insights on epidrugs. Epigenomes 7:6. https://doi.org/10.3390/epigenomes7010006 [DOI: 10.3390/epigenomes7010006]
Kubatka P, Kello M, Kajo K et al (2020) Chemopreventive and therapeutic efficacy of cinnamomum zeylanicum L. bark in experimental breast carcinoma: mechanistic in vivo and in vitro analyses. Molecules 25:1399. https://doi.org/10.3390/molecules25061399 [DOI: 10.3390/molecules25061399]
Kumar SR, Priyatharshni S, Babu VN et al (2014) Quercetin conjugated superparamagnetic magnetite nanoparticles for in-vitro analysis of breast cancer cell lines for chemotherapy applications. J Colloid Interface Sci 436:234–242. https://doi.org/10.1016/j.jcis.2014.08.064 [DOI: 10.1016/j.jcis.2014.08.064]
Kumar G, Virmani T, Sharma A, Pathak K (2023) Codelivery of phytochemicals with conventional anticancer drugs in form of nanocarriers. Pharmaceutics 15(3):889. https://doi.org/10.3390/pharmaceutics15030889 [DOI: 10.3390/pharmaceutics15030889]
Kumari M, Sharma N, Manchanda R et al (2021) PGMD/curcumin nanoparticles for the treatment of breast cancer. Sci Rep 11:3824. https://doi.org/10.1038/s41598-021-81701-x [DOI: 10.1038/s41598-021-81701-x]
Lee J, Chatterjee DK, Lee MH, Krishnan S (2014) Gold nanoparticles in breast cancer treatment: promise and potential pitfalls. Cancer Lett 347:46–53. https://doi.org/10.1016/j.canlet.2014.02.006 [DOI: 10.1016/j.canlet.2014.02.006]
Lee GA, Choi KC, Hwang KA (2017) Kaempferol, a phytoestrogen, suppressed triclosan-induced epithelial-mesenchymal transition and metastatic-related behaviors of MCF-7 breast cancer cells. Environ Toxicol Pharmacol 49:48–57. https://doi.org/10.1016/j.etap.2016.11.016 [DOI: 10.1016/j.etap.2016.11.016]
Li N, Wang Z, Zhang Y et al (2018) Curcumin-loaded redox-responsive mesoporous silica nanoparticles for targeted breast cancer therapy. Artif Cells Nanomed Biotechnol 46:921–935. https://doi.org/10.1080/21691401.2018.1473412 [DOI: 10.1080/21691401.2018.1473412]
Liang Y, Zhang H, Song X, Yang Q (2020) Metastatic heterogeneity of breast cancer: molecular mechanism and potential therapeutic targets. Semin Cancer Biol 60:4–27. https://doi.org/10.1016/J.SEMCANCER.2019.08.012 [DOI: 10.1016/J.SEMCANCER.2019.08.012]
Lillard JW (2020) Delivery system for specifically targeting cancer cells and method of use thereof. EP2744483B1
Lin M, Teng L, Wang Y et al (2016) Curcumin-guided nanotherapy: a lipid-based nanomedicine for targeted drug delivery in breast cancer therapy. Drug Deliv 23:1420–1425. https://doi.org/10.3109/10717544.2015.1066902 [DOI: 10.3109/10717544.2015.1066902]
Liu S, Tang Y, Li J, Zhao W (2024) Global, regional, and national trends in the burden of breast cancer among individuals aged 70 years and older from 1990 to 2021: an analysis based on the global burden of disease study 2021. Arch Public Health 82:170. https://doi.org/10.1186/s13690-024-01404-3 [DOI: 10.1186/s13690-024-01404-3]
Lukasiewicz S, Czeczelewski M, Forma A et al (2021) Breast cancer—epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—an updated review. Cancers (Basel) 13:4287. https://doi.org/10.1007/s12032-023-02111-9 [DOI: 10.1007/s12032-023-02111-9]
Machado FC, de Matos RPA, Primo FL et al (2019) Effect of curcumin-nanoemulsion associated with photodynamic therapy in breast adenocarcinoma cell line. Bioorg Med Chem 27:1882–1890 [DOI: 10.1016/j.bmc.2019.03.044]
Mahmoudi R, Ashraf Mirahmadi-Babaheidri S, Delaviz H et al (2021) RGD peptide-mediated liposomal curcumin targeted delivery to breast cancer cells. J Biomater Appl 35:743–753. https://doi.org/10.1177/0885328220949367 [DOI: 10.1177/0885328220949367]
Majrashi TA, Alshehri SA, Alsayari A et al (2023) Insight into the biological roles and mechanisms of phytochemicals in different types of cancer: targeting cancer therapeutics. Nutrients 15:1704. https://doi.org/10.3390/nu15071704 [DOI: 10.3390/nu15071704]
Miele E, Spinelli GP, Miele E, Tomao F, Tomao S (2009) Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int J Nanomedicine 4:99–105. https://doi.org/10.2147/ijn.s3061 [DOI: 10.2147/ijn.s3061]
Minaei A, Sabzichi M, Ramezani F, Hamishehkar H, Samadi N (2016) Co-delivery with nano-quercetin enhances doxorubicin-mediated cytotoxicity against MCF-7 cells. Mol Biol Rep 43:99–105. https://doi.org/10.1007/s11033-016-3942-x [DOI: 10.1007/s11033-016-3942-x]
Mishra N, Bhattacharya V, Muthumanickam A et al (2023) Transferosomes the effective targeted drug delivery system overview. J Pharm Negat Results 13:2022. https://doi.org/10.47750/pnr.2022.13.S08.548 [DOI: 10.47750/pnr.2022.13.S08.548]
Mittal L, Ranjani S, Shariq Ahmed M et al (2021) Turmeric-silver-nanoparticles for effective treatment of breast cancer and to break CTX-M-15 mediated antibiotic resistance in Escherichia coli. Inorg Nano-Met Chem 51:867–874. https://doi.org/10.1080/24701556.2020.1812644 [DOI: 10.1080/24701556.2020.1812644]
Moballegh-Nasery M, Mandegary A, Eslaminejad T et al (2021) Cytotoxicity evaluation of curcumin-loaded affibody-decorated liposomes against breast cancerous cell lines. J Liposome Res 31:189–194. https://doi.org/10.1080/08982104.2020.1755981 [DOI: 10.1080/08982104.2020.1755981]
Mohanty A, Uthaman S, Park IK (2020) Utilization of polymer-lipid hybrid nanoparticles for targeted anti-cancer therapy. Molecules 25:4377. https://doi.org/10.3390/molecules25194377 [DOI: 10.3390/molecules25194377]
Mohebian Z, Babazadeh M, Zarghami N (2023) In vitro efficacy of curcumin-loaded amine-functionalized mesoporous silica nanoparticles against MCF-7 breast cancer cells. Adv Pharm Bull 13:317–327. https://doi.org/10.34172/apb.2023.035 [DOI: 10.34172/apb.2023.035]
Montazerabadi A, Beik J, Irajirad R et al (2019) Folate-modified and curcumin-loaded dendritic magnetite nanocarriers for the targeted thermo-chemotherapy of cancer cells. Artif Cells Nanomed Biotechnol 47:330–340. https://doi.org/10.1080/21691401.2018.1557670 [DOI: 10.1080/21691401.2018.1557670]
More MP, Pardeshi SR, Pardeshi CV et al (2021) Recent advances in phytochemical-based nanoformulations for drug-resistant cancer. Med Drug Discov 10:100082. https://doi.org/10.1016/j.medidd.2021.100082 [DOI: 10.1016/j.medidd.2021.100082]
Nasri S, Ebrahimi-Hosseinzadeh B, Rahaie M et al (2020) Thymoquinone-loaded ethosome with breast cancer potential: optimization, in vitro and biological assessment. J Nanostructure Chem 10:19–31. https://doi.org/10.1007/s40097-019-00325-w [DOI: 10.1007/s40097-019-00325-w]
Niazvand F, Orazizadeh M, Khorsandi L et al (2019) Effects of quercetin-loaded nanoparticles on MCF-7 human breast cancer cells. Medicina 55:114. https://doi.org/10.3390/medicina55040114 [DOI: 10.3390/medicina55040114]
Noor NS, Kaus NHM, Szewczuk MR, Hamid SBS (2021) Formulation, characterization and cytotoxicity effects of novel thymoquinone-plga-pf68 nanoparticles. Int J Mol Sci 22:9420. https://doi.org/10.3390/ijms22179420 [DOI: 10.3390/ijms22179420]
Nounou MI, ElAmrawy F, Ahmed N et al (2015) Breast cancer: conventional diagnosis and treatment modalities and recent patents and technologies. Breast Cancer 9:17–34. https://doi.org/10.4137/BCBCR.S29420 [DOI: 10.4137/BCBCR.S29420]
Ong C, Lim JZZ, Ng C-T et al (2013) Silver nanoparticles in cancer: therapeutic efficacy and toxicity. Curr Med Chem 20:772–781. https://doi.org/10.2174/0929867311320060003 [DOI: 10.2174/0929867311320060003]
Ong S, Saiful Yazan L, Ng WK et al (2018) Thymoquinone loaded in nanostructured lipid carrier showed enhanced anticancer activity in 4T1 tumor-bearing mice. Nanomedicine 13:1567–1582. https://doi.org/10.2217/nnm-2018-0322 [DOI: 10.2217/nnm-2018-0322]
Ozkan G, Günal-Köroğlu D, Karadag A et al (2023) A mechanistic updated overview on lycopene as potential anticancer agent. Biomed Pharmacothe 161:114428. https://doi.org/10.1016/j.biopha.2023.114428 [DOI: 10.1016/j.biopha.2023.114428]
Pahwa R, Pal S, Saroha K et al (2021) Transferosomes: unique vesicular carriers for effective transdermal delivery. J Appl Pharm Sci 11:001–008. https://doi.org/10.7324/JAPS.2021.110501 [DOI: 10.7324/JAPS.2021.110501]
Pahwa R, Sharma G, Chhabra J et al (2024) Nanoemulsion therapy: a paradigm shift in lung cancer management. J Drug Del Sci Tech 101:106227. https://doi.org/10.1016/j.jddst.2024.106227 [DOI: 10.1016/j.jddst.2024.106227]
Park IH, Sohn JH, Kim SB et al (2017) An open-label, randomized, parallel, phase III trial evaluating the efficacy and safety of polymeric micelle-formulated paclitaxel compared to conventional cremophor el-based paclitaxel for recurrent or metastatic HER2-negative breast cancer. Cancer Res Treat 49:569–577. https://doi.org/10.4143/crt.2016.289 [DOI: 10.4143/crt.2016.289]
Parveen A, Parveen B, Parveen R, Ahmad S (2015) Challenges and guidelines for clinical trial of herbal drugs. J Pharm Bioallied Sci 7(4):329–333. https://doi.org/10.4103/0975-7406.168035 [DOI: 10.4103/0975-7406.168035]
Patel G, Thakur NS, Kushwah V et al (2020) Liposomal delivery of mycophenolic acid with quercetin for improved breast cancer therapy in SD Rats. Front Bioeng Biotechnol 8:631. https://doi.org/10.3389/fbioe.2020.00631 [DOI: 10.3389/fbioe.2020.00631]
Piha-Paul SA, Thein KZ, De Souza P et al (2021) First-in-human, phase I/IIa study of CRLX301, a nanoparticle drug conjugate containing docetaxel, in patients with advanced or metastatic solid malignancies. Invest New Drugs 39:1047–1056. https://doi.org/10.1007/s10637-021-01081-x [DOI: 10.1007/s10637-021-01081-x]
Pourgholi A, Dadashpour M, Mousapour A et al (2021) Anticancer potential of silibinin loaded polymeric nanoparticles against breast cancer cells: insight into the apoptotic genes targets. Asian Pac J Cancer Prev 22:2587–2596. https://doi.org/10.31557/APJCP.2021.22.8.2587 [DOI: 10.31557/APJCP.2021.22.8.2587]
Pradeep KS, Armitage AP, Satishchandra BO (2017) Curcumin sophorolipid complex.US20170224636
Radhakrishnan R, Kulhari H, Pooja D et al (2016) Encapsulation of biophenolic phytochemical EGCG within lipid nanoparticles enhances its stability and cytotoxicity against cancer. Chem Phys Lipids 198:51–60. https://doi.org/10.1016/j.chemphyslip.2016.05.006 [DOI: 10.1016/j.chemphyslip.2016.05.006]
Rahat I, Yadav P, Singhal A et al (2024) Polymer lipid hybrid nanoparticles for phytochemical delivery: challenges, progress, and future prospects. Beilstein J Nanotechnol 15:1473–1497. https://doi.org/10.3762/bjnano.15.118 [DOI: 10.3762/bjnano.15.118]
Rahman MA, Mittal V, Wahab S et al (2022) Intravenous nanocarrier for improved efficacy of quercetin and curcumin against breast cancer cells: development and comparison of single and dual drug–loaded formulations using hemolysis, cytotoxicity and cellular uptake studies. Membranes 12:713. https://doi.org/10.3390/membranes12070713 [DOI: 10.3390/membranes12070713]
Rajput S, Prashanth Kumar BN, Banik P, Parida S, Mandal M (2015) Thymoquinone restores radiation-induced TGF-β expression and abrogates EMT in chemoradiotherapy of breast cancer cells. J Cell Physiol 230:620–629. https://doi.org/10.1002/jcp.24780 [DOI: 10.1002/jcp.24780]
Ramedani A, Sabzevari O, Simchi A (2022) Processing of liposome-encapsulated natural herbs derived from silybum marianum plants for the treatment of breast cancer cells. Scientia Iranica 29:3619–3627. https://doi.org/10.24200/sci.2022.61070.7130 [DOI: 10.24200/sci.2022.61070.7130]
Rastegar R, Akbari Javar H, Khoobi M et al (2018) Evaluation of a novel biocompatible magnetic nanomedicine based on beta-cyclodextrin, loaded doxorubicin-curcumin for overcoming chemoresistance in breast cancer. Artif Cells Nanomed Biotechnol 46:207–216. https://doi.org/10.1080/21691401.2018.1453829 [DOI: 10.1080/21691401.2018.1453829]
Reeves A, Vinogradov SV, Morrissey P et al (2015) Curcumin-encapsulating nanogels as an effective anticancer formulation for intracellular uptake. Mol Cell Pharmacol 7:25–40. https://doi.org/10.4255/mcpharmacol.15.04 [DOI: 10.4255/mcpharmacol.15.04]
Refael C, Quijia Chorilli M (2022) Piperine for treating breast cancer: a review of molecular mechanisms, combination with anticancer drugs and nanosystems. Phytothermal Research 36:147–163. https://doi.org/10.1002/ptr.7291 [DOI: 10.1002/ptr.7291]
Rizwanullah M, Javed A, Amine S (2016) Nanostructured lipid carriers: a novel platform for chemotherapeutics. Curr Drug Deliv 13:4–26. https://doi.org/10.2174/1567201812666150817124133 [DOI: 10.2174/1567201812666150817124133]
Rizwanullah Md, Amin S, Mir SR et al (2018) Phytochemical based nanomedicines against cancer: current status and future prospects. J Drug Target 26:731–752. https://doi.org/10.1080/1061186X.2017.1408115 [DOI: 10.1080/1061186X.2017.1408115]
Safwat MA, Kandil BA, Elblbesy MA et al (2020) Epigallocatechin-3-gallate-loaded gold nanoparticles: preparation and evaluation of anticancer efficacy in ehrlich tumor-bearing mice. Pharmaceuticals 13:254. https://doi.org/10.3390/ph13090254 [DOI: 10.3390/ph13090254]
Saghatelyan T, Tananyan A, Janoyan N et al (2020) Efficacy and safety of curcumin in combination with paclitaxel in patients with advanced, metastatic breast cancer: a comparative, randomized, double-blind, placebo-controlled clinical trial. Phytomedicine 70:153218. https://doi.org/10.1016/j.phymed.2020.153218 [DOI: 10.1016/j.phymed.2020.153218]
Saini S, Gulati N, Awasthi R et al (2024) Monoclonal antibodies and antibody-drug conjugates as emerging therapeutics for breast cancer treatment. Curr Drug Deliv. 21:993–1009. https://doi.org/10.2174/1567201820666230731094258 [DOI: 10.2174/1567201820666230731094258]
Sarika PR, Nirmala RJ (2016) Curcumin loaded gum arabic aldehyde-gelatin nanogels for breast cancer therapy. Mater Sci Eng C 65:331–337. https://doi.org/10.1016/j.msec.2016.04.044 [DOI: 10.1016/j.msec.2016.04.044]
Sarkar A, Ghosh S, Chowdhury S et al (2016) Targeted delivery of quercetin loaded mesoporous silica nanoparticles to the breast cancer cells. Biochim Biophys Acta 1860:2065–2075. https://doi.org/10.1016/j.bbagen.2016.07.001 [DOI: 10.1016/j.bbagen.2016.07.001]
Satari A, Ghasemi S, Habtemariam S, Asgharian S, Lorigooini Z (2021) Rutin: a flavonoid as an effective sensitizer for anticancer therapy; insights into multifaceted mechanisms and applicability for combination therapy. Evid Based Complement Alternat Med 2021:9913179. https://doi.org/10.1155/2021/9913179 [DOI: 10.1155/2021/9913179]
Sawanny R, Pramanik S, Agarwal U (2021) Role of phytochemicals in the treatment of breast cancer: natural swords battling cancer cells. Curr Cancer Ther Rev 17:179–196. https://doi.org/10.2174/1573394716666210106123255 [DOI: 10.2174/1573394716666210106123255]
Scioli MS, Muraca G, Ruiz ME (2020) Solid lipid nanoparticles for drug delivery: pharmacological and biopharmaceutical aspects. Front Mol Biosci 7:319. https://doi.org/10.3389/fmolb.2020.587997 [DOI: 10.3389/fmolb.2020.587997]
Setayesh A, Bagheri F, Boddohi S (2020) Self-assembled formation of chondroitin sulfate-based micellar nanogel for curcumin delivery to breast cancer cells. Int J Biol Macromol 161:771–778. https://doi.org/10.1016/J.IJBIOMAC.2020.06.108 [DOI: 10.1016/J.IJBIOMAC.2020.06.108]
Sha R, Kong XM, Li XY, Wang YB (2024) Global burden of breast cancer and attributable risk factors in 204 countries and territories, from 1990 to 2021: results from the Global Burden of Disease Study 2021. Biomark Res 12:87. https://doi.org/10.1186/s40364-024-00631-8 [DOI: 10.1186/s40364-024-00631-8]
Shabani H, Karami MH, Kolour J et al (2023) Anticancer activity of thymoquinone against breast cancer cells: mechanisms of action and delivery approaches. Biomed and Pharmacother 165:114972. https://doi.org/10.1016/j.biopha.2023.114972 [DOI: 10.1016/j.biopha.2023.114972]
Shankar E, Goel A, Gupta K, Gupta S (2017) Plant flavone apigenin: an emerging anticancer agent. Curr Pharmacol Rep 3:423–446. https://doi.org/10.1007/s40495-017-0113-2 [DOI: 10.1007/s40495-017-0113-2]
Shariare MH, Khan MA, Al-Masum A et al (2022) Development of stable liposomal drug delivery system of thymoquinone and Its in vitro anticancer studies using breast cancer and cervical cancer cell lines. Molecules 27:6744. https://doi.org/10.3390/molecules27196744 [DOI: 10.3390/molecules27196744]
Shetti P, Jalalpure SS, Patil AS, Kaur K (2023) Apigenin-loaded stealth liposomes: development and pharmacokinetic studies for enhanced plasma retention of drug in cancer therapy. Top Catal 67:46–58. https://doi.org/10.1007/s11244-023-01818-3 [DOI: 10.1007/s11244-023-01818-3]
Si L, Fu J, Liu W et al (2020) Silibinin inhibits migration and invasion of breast cancer MDA-MB-231 cells through induction of mitochondrial fusion. Mol Cell Biochem 463:189–201. https://doi.org/10.1007/s11010-019-03640-6 [DOI: 10.1007/s11010-019-03640-6]
Siegel RL, Giaquinto AN, Jemal A (2024) Cancer statistics, 2024. CA Cancer J Clin 74:12–49. https://doi.org/10.3322/caac.21820 [DOI: 10.3322/caac.21820]
Singh A, Srivastav S, Singh MP, Singh R, Kumar P, Kush P (2024) Recent advances in phytosomes for the safe management of cancer. Phytomed Plus 4:100540. https://doi.org/10.1016/j.phyplu.2024.100540 [DOI: 10.1016/j.phyplu.2024.100540]
Smolarz B, Nowak AZ, Romanowicz H (2022) Breast cancer-epidemiology, classification, pathogenesis and treatment (Review of literature). Cancers 14:2569. https://doi.org/10.3390/cancers14102569 [DOI: 10.3390/cancers14102569]
Sohel M, Biswas P, Al Amin M et al (2022) Genistein, a potential phytochemical against breast cancer treatment-insight into the molecular mechanisms. Processes 10:415. https://doi.org/10.3390/pr10020415 [DOI: 10.3390/pr10020415]
Sohel M, Aktar S, Biswas P et al (2023) Exploring the anti-cancer potential of dietary phytochemicals for the patients with breast cancer: a comprehensive review. Cancer Med 12:14556–14583. https://doi.org/10.1002/cam4.5984 [DOI: 10.1002/cam4.5984]
Solanki R, Jodha B, Prabina KE et al (2022) Recent advances in phytochemical based nano-drug delivery systems to combat breast cancer: a review. J Drug Deliv Sci Technol 77:103832. https://doi.org/10.1016/j.jddst.2022.103832 [DOI: 10.1016/j.jddst.2022.103832]
Soni P, Kaur J, Tikoo K (2015) Dual drug-loaded paclitaxel–thymoquinone nanoparticles for effective breast cancer therapy. J Nanopart Res 17:18. https://doi.org/10.1007/s11051-014-2821-4 [DOI: 10.1007/s11051-014-2821-4]
Sparreboom A, Scripture CD, Trieu V et al (2005) Comparative preclinical and clinical pharmacokinetics of a cremophor-free, nanoparticle albumin-bound paclitaxel (ABI-007) and paclitaxel formulated in Cremophor (Taxol). Clin Cancer Res 1:4136–4143. https://doi.org/10.1158/1078-0432.CCR-04-2291 [DOI: 10.1158/1078-0432.CCR-04-2291]
Subaşıoğlu A, Güç ZG, Gür EÖ et al (2023) Genetic, Surgical and oncological approach to breast cancer, with BRCA1, BRCA2, CDH1, PALB2, PTEN and TP53 variants. Eur J Breast Health 19:55–69. https://doi.org/10.4274/ejbh.galenos.2022.2022-7-2 [DOI: 10.4274/ejbh.galenos.2022.2022-7-2]
Subramanian S, Prasanna R, Biswas G et al (2020) Nanosomal docetaxel lipid suspension-based chemotherapy in breast cancer: results from a multicenter retrospective study. Breast Cancer: Targets and Therapy 12:77–85. https://doi.org/10.2147/BCTT.S236108 [DOI: 10.2147/BCTT.S236108]
Sumathi DR, Tamizharasi DS, Punitha S, Sivakumar DT (2021) Enhanced anticancer activity of quercetin-loaded tags nanosuspension for drug impervious MCF-7 human breast cancer cells. IN202141046188
Swaminathan H, Saravanamurali K, Yadav SA (2023) Extensive review on breast cancer its etiology, progression, prognostic markers, and treatment. Med Oncol 40:1–26. https://doi.org/10.1007/s12032-023-02111-9 [DOI: 10.1007/s12032-023-02111-9]
Tahir N, Madni A, Correia A et al (2019) Lipid-polymer hybrid nanoparticles for controlled delivery of hydrophilic and lipophilic doxorubicin for breast cancer therapy. Int J Nanomedicine 14:4961–4974. https://doi.org/10.2147/IJN.S209325 [DOI: 10.2147/IJN.S209325]
Takeshima M, Ono M, Higuchi T, Chen C, Hara T, Nakano S (2014) Anti-proliferative and apoptosis-inducing activity of lycopene against three subtypes of human breast cancer cell lines. Cancer Sci 105:252–257. https://doi.org/10.1111/cas.12349 [DOI: 10.1111/cas.12349]
Tao Z, Shi A, Lu C et al (2015) Breast cancer: epidemiology and etiology. Cell Biochem Biophys 72:333–338. https://doi.org/10.1007/s12013-014-0459-6 [DOI: 10.1007/s12013-014-0459-6]
Upaganlawar A, Polshettiwar S, Raut S et al (2022) Effective cancer management: inimitable role of phytochemical based nano-formulations. Curr Drug Metab 23:869–881. https://doi.org/10.2174/1389200223666220905162245 [DOI: 10.2174/1389200223666220905162245]
Vikal A, Maurya R, Khare S et al (2025) Anticancer potential of different phytoconstituents against breast cancer: is the hope for the new drug discovery. Pharmacol Res Nat Prod 6:100133. https://doi.org/10.1016/j.prenap.2024.100133 [DOI: 10.1016/j.prenap.2024.100133]
Vitor LC, Delello L, Filippo D et al (2023) Characterization and in vitro cytotoxicity of piperine-loaded nanoemulsion in breast cancer cells. Chemical Papers 78:2577–2587. https://doi.org/10.21203/rs.3.rs-3352243/v1 [DOI: 10.21203/rs.3.rs-3352243/v1]
Wadhwa K, Pahwa R, Kumar M et al (2022) Mechanistic insights into the pharmacological significance of silymarin. Molecules 27:5327. https://doi.org/10.3390/molecules27165327 [DOI: 10.3390/molecules27165327]
Waks AG, Winer EP (2019) Breast cancer treatment: a review. JAMA 321:288–300. https://doi.org/10.1001/jama.2018.19323 [DOI: 10.1001/jama.2018.19323]
Wang Y, Minden A (2022) Current molecular combination therapies used for the treatment of breast cancer. Int J Mol Sci 23:11046. https://doi.org/10.3390/ijms231911046 [DOI: 10.3390/ijms231911046]
Wang W, Chen T, Xu H et al (2018) Curcumin-loaded solid lipid nanoparticles enhanced anticancer efficiency in breast cancer. Molecules 23:1578. https://doi.org/10.3390/molecules23071578 [DOI: 10.3390/molecules23071578]
Wang W, Zhou M, Xu Y et al (2021) Resveratrol-loaded TPGS-resveratrol-solid lipid nanoparticles for multidrug-resistant therapy of breast cancer: in vivo and in vitro study. Front Bioeng Biotechnol 9:762489. https://doi.org/10.3389/fbioe.2021.762489 [DOI: 10.3389/fbioe.2021.762489]
Xie J, Yang Z, Zhou C et al (2016) Nanotechnology for the delivery of phytochemicals in cancer therapy. Biotechnol Adv 34:343–353. https://doi.org/10.1016/j.biotechadv.2016.04.002 [DOI: 10.1016/j.biotechadv.2016.04.002]
Yadav N, Parveen S, Banerjee M (2020) Potential of nano-phytochemicals in cervical cancer therapy. Clinica Chimica Acta 505:60–72. https://doi.org/10.1016/j.cca.2020.01.035 [DOI: 10.1016/j.cca.2020.01.035]
Yallapu MM, Othman SF, Curtis ET et al (2012) Curcumin-loaded magnetic nanoparticles for breast cancer therapeutics and imaging applications. Int J Nanomedicine 7:1761–1779. https://doi.org/10.2147/IJN.S29290 [DOI: 10.2147/IJN.S29290]
Yasuhira S, Shibazaki M, Nishiya M, Maesawa C (2016) Paclitaxel-induced aberrant mitosis and mitotic slippage efficiently lead to proliferative death irrespective of canonical apoptosis and p53. Cell Cycle 15:3268–3277. https://doi.org/10.1080/15384101.2016.1242537 [DOI: 10.1080/15384101.2016.1242537]
Younes M, Mardirossian R, Rizk L et al (2022) The synergistic effects of curcumin and chemotherapeutic drugs in inhibiting metastatic, invasive and proliferative pathways. Plants 11:2137. https://doi.org/10.3390/plants11162137 [DOI: 10.3390/plants11162137]
Zhang Z, Xu S, Wang Y et al (2018) Near-infrared triggered co-delivery of doxorubicin and quercetin by using gold nanocages with tetradecanol to maximize anti-tumor effects on MCF-7/ADR cells. J Colloid Interface Sci 509:47–57. https://doi.org/10.1016/j.jcis.2017.08.097 [DOI: 10.1016/j.jcis.2017.08.097]
Zhang N, Yu J, Liu P et al (2020) Gold nanoparticles synthesized from Curcuma wenyujin inhibits HER-2/neu transcription in breast cancer cells (MDA-MB-231/HER2). Arab J Chem 13:7264–7273. https://doi.org/10.1016/j.arabjc.2020.08.007 [DOI: 10.1016/j.arabjc.2020.08.007]
Zhao Y, Huan ML, Liu M et al (2016) Doxorubicin and resveratrol co-delivery nanoparticle to overcome doxorubicin resistance. Sci Rep 6:35267. https://doi.org/10.1038/srep35267 [DOI: 10.1038/srep35267]
Zhao YN, Cao YN, Sun J et al (2019) Anti-breast cancer activity of resveratrol encapsulated in liposomes. J Mater Chem B 8:27–37. https://doi.org/10.1039/c9tb02051a [DOI: 10.1039/c9tb02051a]
Zheng Y, Liu P, Wang N et al (2019) Betulinic acid suppresses breast cancer metastasis by targeting grp78-mediated glycolysis and er stress apoptotic pathway. Oxid Med Cell Longev 2019:8781690. https://doi.org/10.1155/2019/8781690 [DOI: 10.1155/2019/8781690]
Zhong XD, Chen LJ, Xu XY et al (2022) Berberine as a potential agent for breast cancer therapy. Front Oncol 12:993775. https://doi.org/10.3389/fonc.2022.993775 [DOI: 10.3389/fonc.2022.993775]
Zhou Y, Chen D, Xue G et al (2020) Improved therapeutic efficacy of quercetin-loaded polymeric nanoparticles on triple-negative breast cancer by inhibiting uPA. RSC Adv 10:34517–34526. https://doi.org/10.1039/d0ra04231e [DOI: 10.1039/d0ra04231e]
Zielinska A, Carreiró F, Oliveira AM et al (2020) Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules 25:3731. https://doi.org/10.3390/molecules25163731 [DOI: 10.3390/molecules25163731]

MeSH Term

Humans
Breast Neoplasms
Female
Phytochemicals
Animals
Antineoplastic Agents, Phytogenic
Nanoparticles
Drug Carriers

Chemicals

Phytochemicals
Antineoplastic Agents, Phytogenic
Drug Carriers

Word Cloud

Similar Articles

Cited By