Gulshan Sharma, Rohil Panwar, Sanskriti Saini, Hardeep Singh Tuli, Karan Wadhwa, Rakesh Pahwa
Abdel-Hakeem MA, Mongy S, Hassan B et al (2021) Curcumin-loaded chitosan-protamine nanoparticles revealed antitumor activity via suppression of NF-κB, proinflammatory cytokines, and Bcl-2 gene expression in the breast cancer cells. J Pharm Sci 110:3298–3305. https://doi.org/10.1016/j.xphs.2021.06.004
[DOI:
10.1016/j.xphs.2021.06.004]
Abd-Ellatef GEF, Gazzano E, Chirio D et al (2020) Curcumin-loaded solid lipid nanoparticles bypass p-glycoprotein mediated doxorubicin resistance in triple-negative breast cancer cells. Pharmaceutics 12:96. https://doi.org/10.3390/pharmaceutics12020096
[DOI:
10.3390/pharmaceutics12020096]
Abu Samaan TM, Samec M, Liskova A, Kubatka P, Büsselberg D (2019) Paclitaxel’s mechanistic and clinical effects on breast cancer. Biomolecules 9:789. https://doi.org/10.3390/biom9120789
[DOI:
10.3390/biom9120789]
Afarin R, Ahmadpour F, Hatami M, Monjezi S, Igder S (2024) Combination of etoposide and quercetin-loaded solid lipid nanoparticles potentiates apoptotic effects on MDA-MB-231 breast cancer cells. Heliyon 10:e31925. https://doi.org/10.1016/j.heliyon.2024.e31925
[DOI:
10.1016/j.heliyon.2024.e31925]
Ahmad A (2019) Breast cancer metastasis and drug resistance: challenges and progress. Ahmad (Ed) - Advances in Experimental Medicine and Biology. Springer. https://doi.org/10.1007/978-3-030-20301-6
Ahmed HM, Nabavi S, Behzad S (2021) Herbal drugs and natural products in the light of nanotechnology and nanomedicine for developing drug formulations. Mini Rev Med Chem 21:302–313. https://doi.org/10.2174/1389557520666200916143240
[DOI:
10.2174/1389557520666200916143240]
Ahmed MB, Islam SU, Alghamdi AAA, Kamran M, Ahsan H, Lee YS (2022) Phytochemicals as chemo-preventive agents and signaling molecule modulators: current role in cancer therapeutics and inflammation. Int J Mol Sci 23:15765. https://doi.org/10.3390/ijms232415765
[DOI:
10.3390/ijms232415765]
Akbarzadeh I, Shayan M, Bourbour M et al (2021) Preparation, optimization and in-vitro evaluation of curcumin-loaded niosome@ calcium alginate nanocarrier as a new approach for breast cancer treatment. Biology (Basel) 10:173. https://doi.org/10.3390/biology10030173
[DOI:
10.3390/biology10030173]
Alhmoud JF, Woolley JF, Al Moustafa AE, Malki MI (2020) DNA damage/repair management in cancers. Cancers 12:1050. https://doi.org/10.3390/cancers12041050
[DOI:
10.3390/cancers12041050]
Ali H, Rizi Y, Shin DH, Rizi SY (2022) Polymeric nanoparticles in cancer chemotherapy: a narrative review. Iran J Public Health 51:226–239
Alshareeda AT, Nur Khatijah MZ, Al-Sowayan BS (2023) Nanotechnology: a revolutionary approach to prevent breast cancer recurrence. Asian J Surg 46:13–17. https://doi.org/10.1016/j.asjsur.2022.03.002
[DOI:
10.1016/j.asjsur.2022.03.002]
Altamimi MA, Hussain A, Alrajhi M et al (2021) Luteolin-loaded elastic liposomes for transdermal delivery to control breast cancer: in vitro and ex vivo evaluations. Pharmaceuticals 14:1143. https://doi.org/10.3390/ph14111143
[DOI:
10.3390/ph14111143]
Ameer SF, Mohamed MY, Elzubair QA, Sharif EAM, Ibrahim WN (2024) Curcumin as a novel therapeutic candidate for cancer: can this natural compound revolutionize cancer treatment? Front Oncol 14:1438040. https://doi.org/10.3389/fonc.2024.1438040
[DOI:
10.3389/fonc.2024.1438040]
Aparajay P, Dev A (2022) Functionalized niosomes as a smart delivery device in cancer and fungal infection. Eur J Pharm Sci 168:106052. https://doi.org/10.1016/j.ejps.2021.106052
[DOI:
10.1016/j.ejps.2021.106052]
Apolinário AC, Hauschke L, Nunes JR et al (2021) Design of multifunctional ethosomes for topical fenretinide delivery and breast cancer chemoprevention. Colloids Surf A Physicochem Eng Asp 623:126745. https://doi.org/10.1016/j.colsurfa.2021.126745
[DOI:
10.1016/j.colsurfa.2021.126745]
Armstrong N, Ryder S, Forbes C et al (2019) A systematic review of the international prevalence of BRCA mutation in breast cancer. Clin Epidemiol 11:543–561. https://doi.org/10.2147/CLEP.S206949
[DOI:
10.2147/CLEP.S206949]
Asghari N, Houshmand S, Rigi A et al (2023) PEGylated cationic nano-niosomes formulation containing herbal medicine curcumin for drug delivery to MCF-7 breast cancer cells. Eurasian Chem Commun 5:556–568. https://doi.org/10.22034/ecc.2023.381375.1592
[DOI:
10.22034/ecc.2023.381375.1592]
Askar MA, El Shawi OE, Abou Zaid OAR et al (2021) Breast cancer suppression by curcumin-naringenin-magnetic-nano-particles: in vitro and in vivo studies. Tumour Biol 43:225–247. https://doi.org/10.3233/TUB-211506
[DOI:
10.3233/TUB-211506]
Balakrishnan S, Bhat FA, Raja Singh P et al (2016) Gold nanoparticle–conjugated quercetin inhibits epithelial–mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Prolif 49:678–697. https://doi.org/10.1111/cpr.12296
[DOI:
10.1111/cpr.12296]
Banyal A, Tiwari S, Sharma A et al (2023) Vinca alkaloids as a potential cancer therapeutics: recent update and future challenges. 3 Biotech 13:211. https://doi.org/10.1007/s13205-023-03636-6
[DOI:
10.1007/s13205-023-03636-6]
Bayat Mokhtari R, Homayouni TS, Baluch N et al (2017) Combination therapy in combating cancer. Oncotarget 8:38022–38043
[DOI:
10.18632/oncotarget.16723]
Bayón-Cordero L, Alkorta I, Arana L (2019) Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials 9:474. https://doi.org/10.3390/nano9030474
[DOI:
10.3390/nano9030474]
Behroozaghdam M, Dehghani M, Zabolian A et al (2022) Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action. Cell Mol Life Sci 79:539. https://doi.org/10.1007/s00018-022-04551-4
[DOI:
10.1007/s00018-022-04551-4]
Bharmoria P, Bisht M, Gomes MC et al (2021) Protein-olive oil-in-water nanoemulsions as encapsulation materials for curcumin acting as anticancer agent towards MDA-MB-231 cells. Sci Rep 11:9099. https://doi.org/10.1038/s41598-021-88482-3
[DOI:
10.1038/s41598-021-88482-3]
Bieche I, Lidereau R (1995) Genetic alterations in breast cancer. Genes, Chromosomes and Cancer 14:227–251. https://doi.org/10.1002/gcc.2870140402
[DOI:
10.1002/gcc.2870140402]
Bose P, Priyam A, Kar R, Pattanayak SP (2020) Quercetin loaded folate targeted plasmonic silver nanoparticles for light activated chemo-photothermal therapy of DMBA induced breast cancer in Sprague Dawley rats. RSC Adv 10:31961–31978. https://doi.org/10.1039/d0ra05793b
[DOI:
10.1039/d0ra05793b]
Bray F, Laversanne M, Sung H et al (2024) Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 74:229–263. https://doi.org/10.3322/caac.21834
[DOI:
10.3322/caac.21834]
Byler S, Goldgar S, Heerboth S et al (2014) Genetic and epigenetic aspects of breast cancer progression and therapy. Anticancer Res 34:1071–1077
[PMID:
24596345]
Cavalcante de Freitas PG, Rodrigues Arruda B, Araújo Mendes MG et al (2023) Resveratrol-loaded polymeric nanoparticles: the effects of D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) on physicochemical and biological properties against breast cancer in vitro and in vivo. Cancers (Basel) 15:2802. https://doi.org/10.3390/cancers15102802
[DOI:
10.3390/cancers15102802]
Chaurasia M, Singh R, Sur S, Flora SJS (2023) A review of FDA approved drugs and their formulations for the treatment of breast cancer. Front Pharmacol 14:1184472. https://doi.org/10.3389/fphar.2023.1184472
[DOI:
10.3389/fphar.2023.1184472]
Chavda VP, Vihol D, Mehta B et al (2022) Phytochemical-loaded liposomes for anticancer therapy: an updated review. Nanomedicine 17:547–568. https://doi.org/10.2217/nnm-2021-0463
[DOI:
10.2217/nnm-2021-0463]
Chavda VP, Nalla LV, Balar P et al (2023a) Advanced phytochemical-based nanocarrier systems for the treatment of breast cancer. Cancers 15:1023. https://doi.org/10.3390/cancers15041023
[DOI:
10.3390/cancers15041023]
Chavda VP, Vuppu S, Bezbaruah R et al (2023b) Phytochemical loaded nanovehicles of biopolymer for breast cancer: a systemic review. Clin Complement MedPharmacol 3:100114. https://doi.org/10.1016/j.ccmp.2023.100114
[DOI:
10.1016/j.ccmp.2023.100114]
Chen H, Zhao Y, Wang H, Nie G, Nan K (2012) Co-delivery strategies based on multifunctional nanocarriers for cancer therapy. Curr Drug Metab 13:1087–1096. https://doi.org/10.2174/138920012802849995
[DOI:
10.2174/138920012802849995]
Cheng T, Wu Y, Liu Z et al (2022) CDKN2A-mediated molecular subtypes characterize the hallmarks of tumor microenvironment and guide precision medicine in triple-negative breast cancer. Front Immunol 13:970950. https://doi.org/10.3389/fimmu.2022.970950
[DOI:
10.3389/fimmu.2022.970950]
Choudhari AS, Mandave PC, Deshpande M et al (2020) Phytochemicals in cancer treatment: from preclinical studies to clinical practice. Front Pharmacol 10:1614. https://doi.org/10.3389/fphar.2019.01614
[DOI:
10.3389/fphar.2019.01614]
Cook MT (2018) Mechanism of metastasis suppression by luteolin in breast cancer. Breast Cancer: Targets and Therapy 10:89–100. https://doi.org/10.2147/BCTT.S144202
[DOI:
10.2147/BCTT.S144202]
Cui T, Zhang S, Sun H (2017) Co-delivery of doxorubicin and pH-sensitive curcumin prodrug by transferrin-targeted nanoparticles for breast cancer treatment. Oncol Rep 37:1253–1260. https://doi.org/10.3892/or.2017.5345
[DOI:
10.3892/or.2017.5345]
Deshmukh PK, Mutha RE, Surana SJ (2021) Electrostatic deposition assisted preparation, characterization and evaluation of chrysin liposomes for breast cancer treatment. Drug Dev Ind Pharm 47:809–819. https://doi.org/10.1080/03639045.2021.1934873
[DOI:
10.1080/03639045.2021.1934873]
Dewi MK, Chaerunisaa AY, Muhaimin M, Joni IM (2022) Improved activity of herbal medicines through nanotechnology. Nanomaterials 12:1–19. https://doi.org/10.3390/nano12224073
[DOI:
10.3390/nano12224073]
Djayanti K, Maharjan P, Cho KH et al (2023) Mesoporous silica nanoparticles as a potential nanoplatform: therapeutic applications and considerations. Int J Mol Sci 24:6349. https://doi.org/10.3390/ijms24076349
[DOI:
10.3390/ijms24076349]
Dubey SK, Kali M, Hejmady S et al (2021) Recent advances of dendrimers as multifunctional nano-carriers to combat breast cancer. Eur J Pharm Sci 164:105890. https://doi.org/10.1016/j.ejps.2021.105890
[DOI:
10.1016/j.ejps.2021.105890]
Eftekhari RB, Maghsoudnia N, Samimi S, Zamzami A, Dorkoosh FA (2019) Co-delivery nanosystems for cancer treatment: a review. Pharm Nanotechnol 7:90–112. https://doi.org/10.2174/2211738507666190321112237
[DOI:
10.2174/2211738507666190321112237]
Esfandiarpour-Boroujeni S, Bagheri-Khoulenjani S, Mirzadeh H, Amanpour S (2017) Fabrication and study of curcumin loaded nanoparticles based on folate-chitosan for breast cancer therapy application. Carbohydr Polym 168:14–21. https://doi.org/10.1016/j.carbpol.2017.03.031
[DOI:
10.1016/j.carbpol.2017.03.031]
Ezike TC, Okpala US, Onoja UL et al (2023) Advances in drug delivery systems, challenges and future directions. Heliyon 9:e17488. https://doi.org/10.1016/j.heliyon.2023.e17488
[DOI:
10.1016/j.heliyon.2023.e17488]
Ezzati M, Yousefi B, Velaei K, Safa A (2020) A review on anti-cancer properties of quercetin in breast cancer. Life Sci 248:117463. https://doi.org/10.1016/j.lfs.2020.117463
[DOI:
10.1016/j.lfs.2020.117463]
Fang L, Zhou H, Cheng L et al (2023) The application of mesoporous silica nanoparticles as a drug delivery vehicle in oral disease treatment. Front Cell Infect Microbiol 13:1124411. https://doi.org/10.3389/fcimb.2023.1124411
[DOI:
10.3389/fcimb.2023.1124411]
Farabegoli F, Granja A, Magalhães J et al (2022) Epigallocatechin-3-gallate delivered in nanoparticles increases cytotoxicity in three breast carcinoma cell lines. ACS Omega 7:41872–41881. https://doi.org/10.1021/acsomega.2c01829
[DOI:
10.1021/acsomega.2c01829]
Farzin A, Etesami SA, Quint J et al (2020) Magnetic nanoparticles in cancer therapy and diagnosis. Adv Healthc Mater 9:1–29. https://doi.org/10.1002/adhm.201901058
[DOI:
10.1002/adhm.201901058]
Feldman NB, Gromovykh TI, Sedyakina NE et al (2018) Cytotoxic and antitumor activity of liposomal silibinin. Bionanoscience 8:971–976. https://doi.org/10.1007/s12668-018-0556-x
[DOI:
10.1007/s12668-018-0556-x]
Fernández-García R, Lalatsa A, Statts L et al (2020) Transferosomes as nanocarriers for drugs across the skin: quality by design from lab to industrial scale. Int J Pharm 573:118817. https://doi.org/10.1016/j.ijpharm.2019.118817
[DOI:
10.1016/j.ijpharm.2019.118817]
Fisusi FA, Akala EO (2019) Drug combinations in breast cancer therapy. Pharm Nanotechnol 7:3–23. https://doi.org/10.2174/2211738507666190122111224
[DOI:
10.2174/2211738507666190122111224]
Fu Y, Chang H, Peng X et al (2014) Resveratrol inhibits breast cancer stem-like cells and induces autophagy via suppressing Wnt/β-catenin signaling pathway. PLoS One 9:e102535. https://doi.org/10.1371/journal.pone.0102535
[DOI:
10.1371/journal.pone.0102535]
Gadag S, Narayan R, Sabhahit JN et al (2022) Transpapillary iontophoretic delivery of resveratrol loaded transfersomes for localized delivery to breast cancer. Biomater Adv 140:213085. https://doi.org/10.1016/j.bioadv.2022.213085
[DOI:
10.1016/j.bioadv.2022.213085]
Gajbhiye KR, Salve R, Narwade M et al (2023) Lipid polymer hybrid nanoparticles: a custom-tailored next-generation approach for cancer therapeutics. Mol Cancer 22:160. https://doi.org/10.1186/s12943-023-01849-0
[DOI:
10.1186/s12943-023-01849-0]
Gao Q, Feng J, Liu W et al (2022) Opportunities and challenges for co-delivery nanomedicines based on combination of phytochemicals with chemotherapeutic drugs in cancer treatment. Adv Drug Deliv Rev 188:114445. https://doi.org/10.1016/j.addr.2022.114445
[DOI:
10.1016/j.addr.2022.114445]
Gao J, Kumari A, Zeng XA et al (2023) Coating of chitosan on poly D, L-lactic-co-glycolic acid thymoquinone nanoparticles enhances the anti-tumor activity in triple-negative breast cancer. Front Chem 11:1044953. https://doi.org/10.3389/fchem.2023.1044953
[DOI:
10.3389/fchem.2023.1044953]
Garg V, Singh H, Bimbrawh S et al (2016) Ethosomes and transfersomes: principles, perspectives and practices. Curr Drug Deliv 14:613–633. https://doi.org/10.2174/1567201813666160520114436
[DOI:
10.2174/1567201813666160520114436]
Gheybi F, Alavizadeh SH, Rezayat SM, Zendehdel E, Jaafari MR (2019) Chemotherapeutic activity of silymarin combined with doxorubicin liposomes in 4T1 breast cancer cells. Nanomed Res J 4:29–34. https://doi.org/10.22034/NMRJ.2019.01.005
[DOI:
10.22034/NMRJ.2019.01.005]
Ghosh S, Dutta S, Sarkar A et al (2021) Targeted delivery of curcumin in breast cancer cells via hyaluronic acid modified mesoporous silica nanoparticle to enhance anticancer efficiency. Colloids Surf B Biointerfaces 197:111404. https://doi.org/10.1016/j.colsurfb.2020.111404
[DOI:
10.1016/j.colsurfb.2020.111404]
Giaquinto AN, Sung H, Newman LA et al (2024) Breast cancer statistics 2024. CA Cancer J Clin 74:477–495. https://doi.org/10.3322/caac.21863
[DOI:
10.3322/caac.21863]
Gilani SJ, Bin-Jumah M, Rizwanullah M et al (2021) Chitosan coated luteolin nanostructured lipid carriers: optimization, in vitro-ex vivo assessments and cytotoxicity study in breast cancer cells. Coatings 11:1–16. https://doi.org/10.3390/coatings11020158
[DOI:
10.3390/coatings11020158]
Gilani SJ, Bin-Jumah MN, Fatima F (2023) Development of statistically optimized piperine-loaded polymeric nanoparticles for breast cancer: in vitro evaluation and cell culture studies. ACS Omega 8:44183–44194. https://doi.org/10.1021/acsomega.3c06605
[DOI:
10.1021/acsomega.3c06605]
Giri TK (2018) Breaking the barrier of cancer through liposome loaded with phytochemicals. Curr Drug Deliv 16:3–17. https://doi.org/10.2174/1567201815666180918112139
[DOI:
10.2174/1567201815666180918112139]
González-Burgos E, Gómez-Serranillos MP (2021) Vinca alkaloids as chemotherapeutic agents against breast cancer. In: Brahmchari G (Ed) Discovery and development of anti-breast cancer agents from natural products, Elsevier, New York, pp 69-101. https://doi.org/10.1016/B978-0-12-821277-6.00004-0
Gorain B, Choudhury H, Nair AB et al (2020) Theranostic application of nanoemulsions in chemotherapy. Drug Discov Today 25:1174–1188. https://doi.org/10.1016/j.drudis.2020.04.013
[DOI:
10.1016/j.drudis.2020.04.013]
Gu Y, Fei Z (2022) Mesoporous silica nanoparticles loaded with resveratrol are used for targeted breast cancer therapy. J Oncol 2022:8471331. https://doi.org/10.1155/2022/8471331
[DOI:
10.1155/2022/8471331]
Gu J, Makey KL, Tucker KB et al (2013) EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFkB, and VEGF expression. Vascular Cell 5:9. https://doi.org/10.1186/2045-824X-5-9
[DOI:
10.1186/2045-824X-5-9]
Gupta L, Sharma AK, Gothwal A et al (2017a) Dendrimer encapsulated and conjugated delivery of berberine: a novel approach mitigating toxicity and improving in vivo pharmacokinetics. Int J Pharm 528:88–99. https://doi.org/10.1016/j.ijpharm.2017.04.073
[DOI:
10.1016/j.ijpharm.2017.04.073]
Gupta VK, Singh R, Sharma B (2017b) Phytochemicals mediated signalling pathways and their implications in cancer chemotherapy: challenges and opportunities in phytochemicals based drug development: a review. Biochem Comp 5:2. https://doi.org/10.7243/2052-9341-5-2
[DOI:
10.7243/2052-9341-5-2]
Hajigholami S, Veisi Malekshahi Z, Bodaghabadi N, Najafi F, Shirzad H, Sadeghizadeh M (2018) Nano packaged tamoxifen and curcumin; effective formulation against sensitive and resistant MCF-7 Cells. Iran J Pharm Res 17:1–10
[PMID:
29755534]
Hajimehdipoor H, Tahmasvand Z, Nejad FG, Maresca M, Rajabi S (2023) Rutin promotes proliferation and orchestrates epithelial-mesenchymal transition and angiogenesis in MCF-7 and MDA-MB-231 breast cancer cells. Nutrients 15:2884. https://doi.org/10.3390/nu15132884
[DOI:
10.3390/nu15132884]
Hajipour H, Hamishehkar H, Nazari Soltan Ahmad S et al (2018) Improved anticancer effects of epigallocatechin gallate using RGD-containing nanostructured lipid carriers. Artif Cells Nanomed Biotechnol 46:283–292. https://doi.org/10.1080/21691401.2017.1423493
[DOI:
10.1080/21691401.2017.1423493]
Hammami I, Alabdallah NM, JomaaKamoun AAIM (2021) Gold nanoparticles: synthesis properties and applications. J King Saud Univ Sci 33:101560. https://doi.org/10.1016/j.jksus.2021.101560
[DOI:
10.1016/j.jksus.2021.101560]
Hasan-Abad AM, Atapour A, Sobhani-Nasab A, Motedayyen H, ArefNezhad R (2024) Plant-based anticancer compounds with a focus on breast cancer. Cancer Rep 7:e70012. https://doi.org/10.1002/cnr2.70012
[DOI:
10.1002/cnr2.70012]
Hatami M, Kouchak M, Kheirollah A et al (2023) Quercetin-loaded solid lipid nanoparticles exhibit antitumor activity and suppress the proliferation of triple-negative MDA-MB 231 breast cancer cells: implications for invasive breast cancer treatment. Mol Biol Rep 50:9417–9430. https://doi.org/10.1007/s11033-023-08848-w
[DOI:
10.1007/s11033-023-08848-w]
Hatkevich T, Ramos J, Santos-Sanchez I, Patel YM (2014) A naringenin-tamoxifen combination impairs cell proliferation and survival of MCF-7 breast cancer cells. Exp Cell Res 327:331–339. https://doi.org/10.1016/j.yexcr.2014.05.017
[DOI:
10.1016/j.yexcr.2014.05.017]
Hermawan A, Ikawati M, Jenie RI et al (2021) Identification of potential therapeutic target of naringenin in breast cancer stem cells inhibition by bioinformatics and in vitro studies. Saudi Pharma J 29:12–26. https://doi.org/10.1016/j.jsps.2020.12.002
[DOI:
10.1016/j.jsps.2020.12.002]
Honarvari B, Karimifard S, Akhtari N, Mehrarya M (2022) Delivery in breast cancer treatment: in silico and in vitro study. Molecules 27:4634. https://doi.org/10.3390/molecules27144634
[DOI:
10.3390/molecules27144634]
Hong OY, Noh EM, Jang HY et al (2017) Epigallocatechin gallate inhibits the growth of MDA-MB-231 breast cancer cells via inactivation of the β-catenin signaling pathway. Oncol Lett 14:441–446. https://doi.org/10.3892/ol.2017.6108
[DOI:
10.3892/ol.2017.6108]
Hu S, Xu Y, Meng L et al (2018) Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells. Exp Ther Med 16:1266–1272. https://doi.org/10.3892/etm.2018.6345
[DOI:
10.3892/etm.2018.6345]
Huang YJ, Wang KL, Chen HY et al (2020) Protective effects of epigallocatechin gallate (EGCG) on endometrial, breast, and ovarian cancers. Biomolecules 10:1–19. https://doi.org/10.3390/biom10111481
[DOI:
10.3390/biom10111481]
Hussain A, Bourguet-Kondracki M-L, Hussain F et al (2022) The potential role of dietary plant ingredients against mammary cancer: a comprehensive review. Crit Rev Food Sci Nutr 62:2580–2605. https://doi.org/10.1080/10408398.2020.1855413
[DOI:
10.1080/10408398.2020.1855413]
Imam SS, Gilani SJ, Bin Jumah MN et al (2022) Harnessing lipid polymer hybrid nanoparticles for enhanced oral bioavailability of thymoquinone: in vitro and in vivo assessments. Polymers 14:3750. https://doi.org/10.3390/polym14183705
[DOI:
10.3390/polym14183705]
Imran M, Salehi B, Sharifi-Rad J et al (2019) Kaempferol: a key emphasis to its anticancer potential. Molecules 24:2277. https://doi.org/10.3390/molecules24122277
[DOI:
10.3390/molecules24122277]
Iyer S, Das A (2021) Responsive nanogels for anti-cancer therapy. Mater Today Proc 44:2330–2333. https://doi.org/10.1016/j.matpr.2020.12.415
[DOI:
10.1016/j.matpr.2020.12.415]
Jadia R, Kydd J, Piel B, Rai P (2018) Liposomes aid curcumin’s combat with cancer in a breast tumor model. Oncomedicine 3:94–109. https://doi.org/10.7150/oncm.27938
[DOI:
10.7150/oncm.27938]
Jakobušić Brala C, Karković Marković A, Kugić A, Torić J, Barbarić M (2023) Combination chemotherapy with selected polyphenols in preclinical and clinical studies-an update overview. Molecules 28:3746. https://doi.org/10.3390/molecules28093746
[DOI:
10.3390/molecules28093746]
Jin H, Pi J, Zhao Y et al (2017) EGFR-targeting PLGA-PEG nanoparticles as a curcumin delivery system for breast cancer therapy. Nanoscale 9:16365–16374. https://doi.org/10.1039/c7nr06898k
[DOI:
10.1039/c7nr06898k]
Jivani A, Shinde RK (2024) A comprehensive review of taxane treatment in breast cancer: clinical perspectives and toxicity profiles. Cureu 16:e59266. https://doi.org/10.7759/cureus.59266
[DOI:
10.7759/cureus.59266]
Kamel AE, Fadel M, Louis D (2019) Curcumin-loaded nanostructured lipid carriers prepared using peceol and olive oil in photodynamic therapy: development and application in breast cancer cell line. Int J Nanomedicine 14:5073–5085. https://doi.org/10.2147/IJN.S210484
[DOI:
10.2147/IJN.S210484]
Kawish SM, Sharma S, Gupta P et al (2024) Nanoparticle-based drug delivery platform for simultaneous administration of phytochemicals and chemotherapeutics: emerging trends in cancer management. Part Part Sys Charact. 2400049:1–24. https://doi.org/10.1002/ppsc.202400049
[DOI:
10.1002/ppsc.202400049]
Kazi J, Sen R, Ganguly S et al (2020) Folate decorated epigallocatechin-3-gallate (EGCG) loaded PLGA nanoparticles; in-vitro and in-vivo targeting efficacy against MDA-MB-231 tumor xenograft. Int J Pharm 585:119449. https://doi.org/10.1016/j.ijpharm.2020.119449
[DOI:
10.1016/j.ijpharm.2020.119449]
Kazmi I, Al-Abbasi FA, Imam SS et al (2022a) Formulation and evaluation of apigenin-loaded hybrid nanoparticles. Pharmaceutics 14:783. https://doi.org/10.3390/pharmaceutics14040783
[DOI:
10.3390/pharmaceutics14040783]
Kazmi I, Al-Abbasi FA, Imam SS et al (2022b) Formulation of piperine nanoparticles: in vitro breast cancer cell line and in vivo evaluation. Polymers 14:1349. https://doi.org/10.3390/polym14071349
[DOI:
10.3390/polym14071349]
Kececiler-Emir C, Ilhan-Ayisigi E, Celen-Erden C et al (2021) Synthesis of resveratrol loaded hybrid silica-PAMAM dendrimer nanoparticles with emphases on inducible nitric oxide synthase and cytotoxicity. Plant Foods Hum Nutr 76:219–225. https://doi.org/10.1007/s11130-021-00897-5
[DOI:
10.1007/s11130-021-00897-5]
Khan S, Sharma A, Jain V (2023) An overview of nanostructured lipid carriers and its application in drug delivery through different routes. Adv Pharm Bull 13:446–460. https://doi.org/10.34172/apb.2023.056
[DOI:
10.34172/apb.2023.056]
Khoobchandani M, Katti KK, Karikachery AR et al (2020) New approaches in breast cancer therapy through green nanotechnology and nano-ayurvedic medicine - pre-clinical and pilot human clinical investigations. Int J Nanomedicine 15:181–197. https://doi.org/10.2147/IJN.S219042
[DOI:
10.2147/IJN.S219042]
Kim TH, Woo JS, Kim YK, Kim KH (2014) Silibinin induces cell death through reactive oxygen species-dependent downregulation of notch-1/ERK/Akt signaling in human breast cancer cells. J Pharmacol Exp Ther 349:268–278. https://doi.org/10.1124/jpet.113.207563
[DOI:
10.1124/jpet.113.207563]
Kim A, Mo K, Kwon H et al (2023) Epigenetic regulation in breast cancer: insights on epidrugs. Epigenomes 7:6. https://doi.org/10.3390/epigenomes7010006
[DOI:
10.3390/epigenomes7010006]
Kubatka P, Kello M, Kajo K et al (2020) Chemopreventive and therapeutic efficacy of cinnamomum zeylanicum L. bark in experimental breast carcinoma: mechanistic in vivo and in vitro analyses. Molecules 25:1399. https://doi.org/10.3390/molecules25061399
[DOI:
10.3390/molecules25061399]
Kumar SR, Priyatharshni S, Babu VN et al (2014) Quercetin conjugated superparamagnetic magnetite nanoparticles for in-vitro analysis of breast cancer cell lines for chemotherapy applications. J Colloid Interface Sci 436:234–242. https://doi.org/10.1016/j.jcis.2014.08.064
[DOI:
10.1016/j.jcis.2014.08.064]
Kumar G, Virmani T, Sharma A, Pathak K (2023) Codelivery of phytochemicals with conventional anticancer drugs in form of nanocarriers. Pharmaceutics 15(3):889. https://doi.org/10.3390/pharmaceutics15030889
[DOI:
10.3390/pharmaceutics15030889]
Kumari M, Sharma N, Manchanda R et al (2021) PGMD/curcumin nanoparticles for the treatment of breast cancer. Sci Rep 11:3824. https://doi.org/10.1038/s41598-021-81701-x
[DOI:
10.1038/s41598-021-81701-x]
Lee J, Chatterjee DK, Lee MH, Krishnan S (2014) Gold nanoparticles in breast cancer treatment: promise and potential pitfalls. Cancer Lett 347:46–53. https://doi.org/10.1016/j.canlet.2014.02.006
[DOI:
10.1016/j.canlet.2014.02.006]
Lee GA, Choi KC, Hwang KA (2017) Kaempferol, a phytoestrogen, suppressed triclosan-induced epithelial-mesenchymal transition and metastatic-related behaviors of MCF-7 breast cancer cells. Environ Toxicol Pharmacol 49:48–57. https://doi.org/10.1016/j.etap.2016.11.016
[DOI:
10.1016/j.etap.2016.11.016]
Li N, Wang Z, Zhang Y et al (2018) Curcumin-loaded redox-responsive mesoporous silica nanoparticles for targeted breast cancer therapy. Artif Cells Nanomed Biotechnol 46:921–935. https://doi.org/10.1080/21691401.2018.1473412
[DOI:
10.1080/21691401.2018.1473412]
Liang Y, Zhang H, Song X, Yang Q (2020) Metastatic heterogeneity of breast cancer: molecular mechanism and potential therapeutic targets. Semin Cancer Biol 60:4–27. https://doi.org/10.1016/J.SEMCANCER.2019.08.012
[DOI:
10.1016/J.SEMCANCER.2019.08.012]
Lillard JW (2020) Delivery system for specifically targeting cancer cells and method of use thereof. EP2744483B1
Lin M, Teng L, Wang Y et al (2016) Curcumin-guided nanotherapy: a lipid-based nanomedicine for targeted drug delivery in breast cancer therapy. Drug Deliv 23:1420–1425. https://doi.org/10.3109/10717544.2015.1066902
[DOI:
10.3109/10717544.2015.1066902]
Liu S, Tang Y, Li J, Zhao W (2024) Global, regional, and national trends in the burden of breast cancer among individuals aged 70 years and older from 1990 to 2021: an analysis based on the global burden of disease study 2021. Arch Public Health 82:170. https://doi.org/10.1186/s13690-024-01404-3
[DOI:
10.1186/s13690-024-01404-3]
Lukasiewicz S, Czeczelewski M, Forma A et al (2021) Breast cancer—epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—an updated review. Cancers (Basel) 13:4287. https://doi.org/10.1007/s12032-023-02111-9
[DOI:
10.1007/s12032-023-02111-9]
Machado FC, de Matos RPA, Primo FL et al (2019) Effect of curcumin-nanoemulsion associated with photodynamic therapy in breast adenocarcinoma cell line. Bioorg Med Chem 27:1882–1890
[DOI:
10.1016/j.bmc.2019.03.044]
Mahmoudi R, Ashraf Mirahmadi-Babaheidri S, Delaviz H et al (2021) RGD peptide-mediated liposomal curcumin targeted delivery to breast cancer cells. J Biomater Appl 35:743–753. https://doi.org/10.1177/0885328220949367
[DOI:
10.1177/0885328220949367]
Majrashi TA, Alshehri SA, Alsayari A et al (2023) Insight into the biological roles and mechanisms of phytochemicals in different types of cancer: targeting cancer therapeutics. Nutrients 15:1704. https://doi.org/10.3390/nu15071704
[DOI:
10.3390/nu15071704]
Miele E, Spinelli GP, Miele E, Tomao F, Tomao S (2009) Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int J Nanomedicine 4:99–105. https://doi.org/10.2147/ijn.s3061
[DOI:
10.2147/ijn.s3061]
Minaei A, Sabzichi M, Ramezani F, Hamishehkar H, Samadi N (2016) Co-delivery with nano-quercetin enhances doxorubicin-mediated cytotoxicity against MCF-7 cells. Mol Biol Rep 43:99–105. https://doi.org/10.1007/s11033-016-3942-x
[DOI:
10.1007/s11033-016-3942-x]
Mishra N, Bhattacharya V, Muthumanickam A et al (2023) Transferosomes the effective targeted drug delivery system overview. J Pharm Negat Results 13:2022. https://doi.org/10.47750/pnr.2022.13.S08.548
[DOI:
10.47750/pnr.2022.13.S08.548]
Mittal L, Ranjani S, Shariq Ahmed M et al (2021) Turmeric-silver-nanoparticles for effective treatment of breast cancer and to break CTX-M-15 mediated antibiotic resistance in Escherichia coli. Inorg Nano-Met Chem 51:867–874. https://doi.org/10.1080/24701556.2020.1812644
[DOI:
10.1080/24701556.2020.1812644]
Moballegh-Nasery M, Mandegary A, Eslaminejad T et al (2021) Cytotoxicity evaluation of curcumin-loaded affibody-decorated liposomes against breast cancerous cell lines. J Liposome Res 31:189–194. https://doi.org/10.1080/08982104.2020.1755981
[DOI:
10.1080/08982104.2020.1755981]
Mohanty A, Uthaman S, Park IK (2020) Utilization of polymer-lipid hybrid nanoparticles for targeted anti-cancer therapy. Molecules 25:4377. https://doi.org/10.3390/molecules25194377
[DOI:
10.3390/molecules25194377]
Mohebian Z, Babazadeh M, Zarghami N (2023) In vitro efficacy of curcumin-loaded amine-functionalized mesoporous silica nanoparticles against MCF-7 breast cancer cells. Adv Pharm Bull 13:317–327. https://doi.org/10.34172/apb.2023.035
[DOI:
10.34172/apb.2023.035]
Montazerabadi A, Beik J, Irajirad R et al (2019) Folate-modified and curcumin-loaded dendritic magnetite nanocarriers for the targeted thermo-chemotherapy of cancer cells. Artif Cells Nanomed Biotechnol 47:330–340. https://doi.org/10.1080/21691401.2018.1557670
[DOI:
10.1080/21691401.2018.1557670]
More MP, Pardeshi SR, Pardeshi CV et al (2021) Recent advances in phytochemical-based nanoformulations for drug-resistant cancer. Med Drug Discov 10:100082. https://doi.org/10.1016/j.medidd.2021.100082
[DOI:
10.1016/j.medidd.2021.100082]
Nasri S, Ebrahimi-Hosseinzadeh B, Rahaie M et al (2020) Thymoquinone-loaded ethosome with breast cancer potential: optimization, in vitro and biological assessment. J Nanostructure Chem 10:19–31. https://doi.org/10.1007/s40097-019-00325-w
[DOI:
10.1007/s40097-019-00325-w]
Niazvand F, Orazizadeh M, Khorsandi L et al (2019) Effects of quercetin-loaded nanoparticles on MCF-7 human breast cancer cells. Medicina 55:114. https://doi.org/10.3390/medicina55040114
[DOI:
10.3390/medicina55040114]
Noor NS, Kaus NHM, Szewczuk MR, Hamid SBS (2021) Formulation, characterization and cytotoxicity effects of novel thymoquinone-plga-pf68 nanoparticles. Int J Mol Sci 22:9420. https://doi.org/10.3390/ijms22179420
[DOI:
10.3390/ijms22179420]
Nounou MI, ElAmrawy F, Ahmed N et al (2015) Breast cancer: conventional diagnosis and treatment modalities and recent patents and technologies. Breast Cancer 9:17–34. https://doi.org/10.4137/BCBCR.S29420
[DOI:
10.4137/BCBCR.S29420]
Ong C, Lim JZZ, Ng C-T et al (2013) Silver nanoparticles in cancer: therapeutic efficacy and toxicity. Curr Med Chem 20:772–781. https://doi.org/10.2174/0929867311320060003
[DOI:
10.2174/0929867311320060003]
Ong S, Saiful Yazan L, Ng WK et al (2018) Thymoquinone loaded in nanostructured lipid carrier showed enhanced anticancer activity in 4T1 tumor-bearing mice. Nanomedicine 13:1567–1582. https://doi.org/10.2217/nnm-2018-0322
[DOI:
10.2217/nnm-2018-0322]
Ozkan G, Günal-Köroğlu D, Karadag A et al (2023) A mechanistic updated overview on lycopene as potential anticancer agent. Biomed Pharmacothe 161:114428. https://doi.org/10.1016/j.biopha.2023.114428
[DOI:
10.1016/j.biopha.2023.114428]
Pahwa R, Pal S, Saroha K et al (2021) Transferosomes: unique vesicular carriers for effective transdermal delivery. J Appl Pharm Sci 11:001–008. https://doi.org/10.7324/JAPS.2021.110501
[DOI:
10.7324/JAPS.2021.110501]
Pahwa R, Sharma G, Chhabra J et al (2024) Nanoemulsion therapy: a paradigm shift in lung cancer management. J Drug Del Sci Tech 101:106227. https://doi.org/10.1016/j.jddst.2024.106227
[DOI:
10.1016/j.jddst.2024.106227]
Park IH, Sohn JH, Kim SB et al (2017) An open-label, randomized, parallel, phase III trial evaluating the efficacy and safety of polymeric micelle-formulated paclitaxel compared to conventional cremophor el-based paclitaxel for recurrent or metastatic HER2-negative breast cancer. Cancer Res Treat 49:569–577. https://doi.org/10.4143/crt.2016.289
[DOI:
10.4143/crt.2016.289]
Parveen A, Parveen B, Parveen R, Ahmad S (2015) Challenges and guidelines for clinical trial of herbal drugs. J Pharm Bioallied Sci 7(4):329–333. https://doi.org/10.4103/0975-7406.168035
[DOI:
10.4103/0975-7406.168035]
Patel G, Thakur NS, Kushwah V et al (2020) Liposomal delivery of mycophenolic acid with quercetin for improved breast cancer therapy in SD Rats. Front Bioeng Biotechnol 8:631. https://doi.org/10.3389/fbioe.2020.00631
[DOI:
10.3389/fbioe.2020.00631]
Piha-Paul SA, Thein KZ, De Souza P et al (2021) First-in-human, phase I/IIa study of CRLX301, a nanoparticle drug conjugate containing docetaxel, in patients with advanced or metastatic solid malignancies. Invest New Drugs 39:1047–1056. https://doi.org/10.1007/s10637-021-01081-x
[DOI:
10.1007/s10637-021-01081-x]
Pourgholi A, Dadashpour M, Mousapour A et al (2021) Anticancer potential of silibinin loaded polymeric nanoparticles against breast cancer cells: insight into the apoptotic genes targets. Asian Pac J Cancer Prev 22:2587–2596. https://doi.org/10.31557/APJCP.2021.22.8.2587
[DOI:
10.31557/APJCP.2021.22.8.2587]
Pradeep KS, Armitage AP, Satishchandra BO (2017) Curcumin sophorolipid complex.US20170224636
Radhakrishnan R, Kulhari H, Pooja D et al (2016) Encapsulation of biophenolic phytochemical EGCG within lipid nanoparticles enhances its stability and cytotoxicity against cancer. Chem Phys Lipids 198:51–60. https://doi.org/10.1016/j.chemphyslip.2016.05.006
[DOI:
10.1016/j.chemphyslip.2016.05.006]
Rahat I, Yadav P, Singhal A et al (2024) Polymer lipid hybrid nanoparticles for phytochemical delivery: challenges, progress, and future prospects. Beilstein J Nanotechnol 15:1473–1497. https://doi.org/10.3762/bjnano.15.118
[DOI:
10.3762/bjnano.15.118]
Rahman MA, Mittal V, Wahab S et al (2022) Intravenous nanocarrier for improved efficacy of quercetin and curcumin against breast cancer cells: development and comparison of single and dual drug–loaded formulations using hemolysis, cytotoxicity and cellular uptake studies. Membranes 12:713. https://doi.org/10.3390/membranes12070713
[DOI:
10.3390/membranes12070713]
Rajput S, Prashanth Kumar BN, Banik P, Parida S, Mandal M (2015) Thymoquinone restores radiation-induced TGF-β expression and abrogates EMT in chemoradiotherapy of breast cancer cells. J Cell Physiol 230:620–629. https://doi.org/10.1002/jcp.24780
[DOI:
10.1002/jcp.24780]
Ramedani A, Sabzevari O, Simchi A (2022) Processing of liposome-encapsulated natural herbs derived from silybum marianum plants for the treatment of breast cancer cells. Scientia Iranica 29:3619–3627. https://doi.org/10.24200/sci.2022.61070.7130
[DOI:
10.24200/sci.2022.61070.7130]
Rastegar R, Akbari Javar H, Khoobi M et al (2018) Evaluation of a novel biocompatible magnetic nanomedicine based on beta-cyclodextrin, loaded doxorubicin-curcumin for overcoming chemoresistance in breast cancer. Artif Cells Nanomed Biotechnol 46:207–216. https://doi.org/10.1080/21691401.2018.1453829
[DOI:
10.1080/21691401.2018.1453829]
Reeves A, Vinogradov SV, Morrissey P et al (2015) Curcumin-encapsulating nanogels as an effective anticancer formulation for intracellular uptake. Mol Cell Pharmacol 7:25–40. https://doi.org/10.4255/mcpharmacol.15.04
[DOI:
10.4255/mcpharmacol.15.04]
Refael C, Quijia Chorilli M (2022) Piperine for treating breast cancer: a review of molecular mechanisms, combination with anticancer drugs and nanosystems. Phytothermal Research 36:147–163. https://doi.org/10.1002/ptr.7291
[DOI:
10.1002/ptr.7291]
Rizwanullah M, Javed A, Amine S (2016) Nanostructured lipid carriers: a novel platform for chemotherapeutics. Curr Drug Deliv 13:4–26. https://doi.org/10.2174/1567201812666150817124133
[DOI:
10.2174/1567201812666150817124133]
Rizwanullah Md, Amin S, Mir SR et al (2018) Phytochemical based nanomedicines against cancer: current status and future prospects. J Drug Target 26:731–752. https://doi.org/10.1080/1061186X.2017.1408115
[DOI:
10.1080/1061186X.2017.1408115]
Safwat MA, Kandil BA, Elblbesy MA et al (2020) Epigallocatechin-3-gallate-loaded gold nanoparticles: preparation and evaluation of anticancer efficacy in ehrlich tumor-bearing mice. Pharmaceuticals 13:254. https://doi.org/10.3390/ph13090254
[DOI:
10.3390/ph13090254]
Saghatelyan T, Tananyan A, Janoyan N et al (2020) Efficacy and safety of curcumin in combination with paclitaxel in patients with advanced, metastatic breast cancer: a comparative, randomized, double-blind, placebo-controlled clinical trial. Phytomedicine 70:153218. https://doi.org/10.1016/j.phymed.2020.153218
[DOI:
10.1016/j.phymed.2020.153218]
Saini S, Gulati N, Awasthi R et al (2024) Monoclonal antibodies and antibody-drug conjugates as emerging therapeutics for breast cancer treatment. Curr Drug Deliv. 21:993–1009. https://doi.org/10.2174/1567201820666230731094258
[DOI:
10.2174/1567201820666230731094258]
Sarika PR, Nirmala RJ (2016) Curcumin loaded gum arabic aldehyde-gelatin nanogels for breast cancer therapy. Mater Sci Eng C 65:331–337. https://doi.org/10.1016/j.msec.2016.04.044
[DOI:
10.1016/j.msec.2016.04.044]
Sarkar A, Ghosh S, Chowdhury S et al (2016) Targeted delivery of quercetin loaded mesoporous silica nanoparticles to the breast cancer cells. Biochim Biophys Acta 1860:2065–2075. https://doi.org/10.1016/j.bbagen.2016.07.001
[DOI:
10.1016/j.bbagen.2016.07.001]
Satari A, Ghasemi S, Habtemariam S, Asgharian S, Lorigooini Z (2021) Rutin: a flavonoid as an effective sensitizer for anticancer therapy; insights into multifaceted mechanisms and applicability for combination therapy. Evid Based Complement Alternat Med 2021:9913179. https://doi.org/10.1155/2021/9913179
[DOI:
10.1155/2021/9913179]
Sawanny R, Pramanik S, Agarwal U (2021) Role of phytochemicals in the treatment of breast cancer: natural swords battling cancer cells. Curr Cancer Ther Rev 17:179–196. https://doi.org/10.2174/1573394716666210106123255
[DOI:
10.2174/1573394716666210106123255]
Scioli MS, Muraca G, Ruiz ME (2020) Solid lipid nanoparticles for drug delivery: pharmacological and biopharmaceutical aspects. Front Mol Biosci 7:319. https://doi.org/10.3389/fmolb.2020.587997
[DOI:
10.3389/fmolb.2020.587997]
Setayesh A, Bagheri F, Boddohi S (2020) Self-assembled formation of chondroitin sulfate-based micellar nanogel for curcumin delivery to breast cancer cells. Int J Biol Macromol 161:771–778. https://doi.org/10.1016/J.IJBIOMAC.2020.06.108
[DOI:
10.1016/J.IJBIOMAC.2020.06.108]
Sha R, Kong XM, Li XY, Wang YB (2024) Global burden of breast cancer and attributable risk factors in 204 countries and territories, from 1990 to 2021: results from the Global Burden of Disease Study 2021. Biomark Res 12:87. https://doi.org/10.1186/s40364-024-00631-8
[DOI:
10.1186/s40364-024-00631-8]
Shabani H, Karami MH, Kolour J et al (2023) Anticancer activity of thymoquinone against breast cancer cells: mechanisms of action and delivery approaches. Biomed and Pharmacother 165:114972. https://doi.org/10.1016/j.biopha.2023.114972
[DOI:
10.1016/j.biopha.2023.114972]
Shankar E, Goel A, Gupta K, Gupta S (2017) Plant flavone apigenin: an emerging anticancer agent. Curr Pharmacol Rep 3:423–446. https://doi.org/10.1007/s40495-017-0113-2
[DOI:
10.1007/s40495-017-0113-2]
Shariare MH, Khan MA, Al-Masum A et al (2022) Development of stable liposomal drug delivery system of thymoquinone and Its in vitro anticancer studies using breast cancer and cervical cancer cell lines. Molecules 27:6744. https://doi.org/10.3390/molecules27196744
[DOI:
10.3390/molecules27196744]
Shetti P, Jalalpure SS, Patil AS, Kaur K (2023) Apigenin-loaded stealth liposomes: development and pharmacokinetic studies for enhanced plasma retention of drug in cancer therapy. Top Catal 67:46–58. https://doi.org/10.1007/s11244-023-01818-3
[DOI:
10.1007/s11244-023-01818-3]
Si L, Fu J, Liu W et al (2020) Silibinin inhibits migration and invasion of breast cancer MDA-MB-231 cells through induction of mitochondrial fusion. Mol Cell Biochem 463:189–201. https://doi.org/10.1007/s11010-019-03640-6
[DOI:
10.1007/s11010-019-03640-6]
Siegel RL, Giaquinto AN, Jemal A (2024) Cancer statistics, 2024. CA Cancer J Clin 74:12–49. https://doi.org/10.3322/caac.21820
[DOI:
10.3322/caac.21820]
Singh A, Srivastav S, Singh MP, Singh R, Kumar P, Kush P (2024) Recent advances in phytosomes for the safe management of cancer. Phytomed Plus 4:100540. https://doi.org/10.1016/j.phyplu.2024.100540
[DOI:
10.1016/j.phyplu.2024.100540]
Smolarz B, Nowak AZ, Romanowicz H (2022) Breast cancer-epidemiology, classification, pathogenesis and treatment (Review of literature). Cancers 14:2569. https://doi.org/10.3390/cancers14102569
[DOI:
10.3390/cancers14102569]
Sohel M, Biswas P, Al Amin M et al (2022) Genistein, a potential phytochemical against breast cancer treatment-insight into the molecular mechanisms. Processes 10:415. https://doi.org/10.3390/pr10020415
[DOI:
10.3390/pr10020415]
Sohel M, Aktar S, Biswas P et al (2023) Exploring the anti-cancer potential of dietary phytochemicals for the patients with breast cancer: a comprehensive review. Cancer Med 12:14556–14583. https://doi.org/10.1002/cam4.5984
[DOI:
10.1002/cam4.5984]
Solanki R, Jodha B, Prabina KE et al (2022) Recent advances in phytochemical based nano-drug delivery systems to combat breast cancer: a review. J Drug Deliv Sci Technol 77:103832. https://doi.org/10.1016/j.jddst.2022.103832
[DOI:
10.1016/j.jddst.2022.103832]
Soni P, Kaur J, Tikoo K (2015) Dual drug-loaded paclitaxel–thymoquinone nanoparticles for effective breast cancer therapy. J Nanopart Res 17:18. https://doi.org/10.1007/s11051-014-2821-4
[DOI:
10.1007/s11051-014-2821-4]
Sparreboom A, Scripture CD, Trieu V et al (2005) Comparative preclinical and clinical pharmacokinetics of a cremophor-free, nanoparticle albumin-bound paclitaxel (ABI-007) and paclitaxel formulated in Cremophor (Taxol). Clin Cancer Res 1:4136–4143. https://doi.org/10.1158/1078-0432.CCR-04-2291
[DOI:
10.1158/1078-0432.CCR-04-2291]
Subaşıoğlu A, Güç ZG, Gür EÖ et al (2023) Genetic, Surgical and oncological approach to breast cancer, with BRCA1, BRCA2, CDH1, PALB2, PTEN and TP53 variants. Eur J Breast Health 19:55–69. https://doi.org/10.4274/ejbh.galenos.2022.2022-7-2
[DOI:
10.4274/ejbh.galenos.2022.2022-7-2]
Subramanian S, Prasanna R, Biswas G et al (2020) Nanosomal docetaxel lipid suspension-based chemotherapy in breast cancer: results from a multicenter retrospective study. Breast Cancer: Targets and Therapy 12:77–85. https://doi.org/10.2147/BCTT.S236108
[DOI:
10.2147/BCTT.S236108]
Sumathi DR, Tamizharasi DS, Punitha S, Sivakumar DT (2021) Enhanced anticancer activity of quercetin-loaded tags nanosuspension for drug impervious MCF-7 human breast cancer cells. IN202141046188
Swaminathan H, Saravanamurali K, Yadav SA (2023) Extensive review on breast cancer its etiology, progression, prognostic markers, and treatment. Med Oncol 40:1–26. https://doi.org/10.1007/s12032-023-02111-9
[DOI:
10.1007/s12032-023-02111-9]
Tahir N, Madni A, Correia A et al (2019) Lipid-polymer hybrid nanoparticles for controlled delivery of hydrophilic and lipophilic doxorubicin for breast cancer therapy. Int J Nanomedicine 14:4961–4974. https://doi.org/10.2147/IJN.S209325
[DOI:
10.2147/IJN.S209325]
Takeshima M, Ono M, Higuchi T, Chen C, Hara T, Nakano S (2014) Anti-proliferative and apoptosis-inducing activity of lycopene against three subtypes of human breast cancer cell lines. Cancer Sci 105:252–257. https://doi.org/10.1111/cas.12349
[DOI:
10.1111/cas.12349]
Tao Z, Shi A, Lu C et al (2015) Breast cancer: epidemiology and etiology. Cell Biochem Biophys 72:333–338. https://doi.org/10.1007/s12013-014-0459-6
[DOI:
10.1007/s12013-014-0459-6]
Upaganlawar A, Polshettiwar S, Raut S et al (2022) Effective cancer management: inimitable role of phytochemical based nano-formulations. Curr Drug Metab 23:869–881. https://doi.org/10.2174/1389200223666220905162245
[DOI:
10.2174/1389200223666220905162245]
Vikal A, Maurya R, Khare S et al (2025) Anticancer potential of different phytoconstituents against breast cancer: is the hope for the new drug discovery. Pharmacol Res Nat Prod 6:100133. https://doi.org/10.1016/j.prenap.2024.100133
[DOI:
10.1016/j.prenap.2024.100133]
Vitor LC, Delello L, Filippo D et al (2023) Characterization and in vitro cytotoxicity of piperine-loaded nanoemulsion in breast cancer cells. Chemical Papers 78:2577–2587. https://doi.org/10.21203/rs.3.rs-3352243/v1
[DOI:
10.21203/rs.3.rs-3352243/v1]
Wadhwa K, Pahwa R, Kumar M et al (2022) Mechanistic insights into the pharmacological significance of silymarin. Molecules 27:5327. https://doi.org/10.3390/molecules27165327
[DOI:
10.3390/molecules27165327]
Waks AG, Winer EP (2019) Breast cancer treatment: a review. JAMA 321:288–300. https://doi.org/10.1001/jama.2018.19323
[DOI:
10.1001/jama.2018.19323]
Wang Y, Minden A (2022) Current molecular combination therapies used for the treatment of breast cancer. Int J Mol Sci 23:11046. https://doi.org/10.3390/ijms231911046
[DOI:
10.3390/ijms231911046]
Wang W, Chen T, Xu H et al (2018) Curcumin-loaded solid lipid nanoparticles enhanced anticancer efficiency in breast cancer. Molecules 23:1578. https://doi.org/10.3390/molecules23071578
[DOI:
10.3390/molecules23071578]
Wang W, Zhou M, Xu Y et al (2021) Resveratrol-loaded TPGS-resveratrol-solid lipid nanoparticles for multidrug-resistant therapy of breast cancer: in vivo and in vitro study. Front Bioeng Biotechnol 9:762489. https://doi.org/10.3389/fbioe.2021.762489
[DOI:
10.3389/fbioe.2021.762489]
Xie J, Yang Z, Zhou C et al (2016) Nanotechnology for the delivery of phytochemicals in cancer therapy. Biotechnol Adv 34:343–353. https://doi.org/10.1016/j.biotechadv.2016.04.002
[DOI:
10.1016/j.biotechadv.2016.04.002]
Yadav N, Parveen S, Banerjee M (2020) Potential of nano-phytochemicals in cervical cancer therapy. Clinica Chimica Acta 505:60–72. https://doi.org/10.1016/j.cca.2020.01.035
[DOI:
10.1016/j.cca.2020.01.035]
Yallapu MM, Othman SF, Curtis ET et al (2012) Curcumin-loaded magnetic nanoparticles for breast cancer therapeutics and imaging applications. Int J Nanomedicine 7:1761–1779. https://doi.org/10.2147/IJN.S29290
[DOI:
10.2147/IJN.S29290]
Yasuhira S, Shibazaki M, Nishiya M, Maesawa C (2016) Paclitaxel-induced aberrant mitosis and mitotic slippage efficiently lead to proliferative death irrespective of canonical apoptosis and p53. Cell Cycle 15:3268–3277. https://doi.org/10.1080/15384101.2016.1242537
[DOI:
10.1080/15384101.2016.1242537]
Younes M, Mardirossian R, Rizk L et al (2022) The synergistic effects of curcumin and chemotherapeutic drugs in inhibiting metastatic, invasive and proliferative pathways. Plants 11:2137. https://doi.org/10.3390/plants11162137
[DOI:
10.3390/plants11162137]
Zhang Z, Xu S, Wang Y et al (2018) Near-infrared triggered co-delivery of doxorubicin and quercetin by using gold nanocages with tetradecanol to maximize anti-tumor effects on MCF-7/ADR cells. J Colloid Interface Sci 509:47–57. https://doi.org/10.1016/j.jcis.2017.08.097
[DOI:
10.1016/j.jcis.2017.08.097]
Zhang N, Yu J, Liu P et al (2020) Gold nanoparticles synthesized from Curcuma wenyujin inhibits HER-2/neu transcription in breast cancer cells (MDA-MB-231/HER2). Arab J Chem 13:7264–7273. https://doi.org/10.1016/j.arabjc.2020.08.007
[DOI:
10.1016/j.arabjc.2020.08.007]
Zhao Y, Huan ML, Liu M et al (2016) Doxorubicin and resveratrol co-delivery nanoparticle to overcome doxorubicin resistance. Sci Rep 6:35267. https://doi.org/10.1038/srep35267
[DOI:
10.1038/srep35267]
Zhao YN, Cao YN, Sun J et al (2019) Anti-breast cancer activity of resveratrol encapsulated in liposomes. J Mater Chem B 8:27–37. https://doi.org/10.1039/c9tb02051a
[DOI:
10.1039/c9tb02051a]
Zheng Y, Liu P, Wang N et al (2019) Betulinic acid suppresses breast cancer metastasis by targeting grp78-mediated glycolysis and er stress apoptotic pathway. Oxid Med Cell Longev 2019:8781690. https://doi.org/10.1155/2019/8781690
[DOI:
10.1155/2019/8781690]
Zhong XD, Chen LJ, Xu XY et al (2022) Berberine as a potential agent for breast cancer therapy. Front Oncol 12:993775. https://doi.org/10.3389/fonc.2022.993775
[DOI:
10.3389/fonc.2022.993775]
Zhou Y, Chen D, Xue G et al (2020) Improved therapeutic efficacy of quercetin-loaded polymeric nanoparticles on triple-negative breast cancer by inhibiting uPA. RSC Adv 10:34517–34526. https://doi.org/10.1039/d0ra04231e
[DOI:
10.1039/d0ra04231e]
Zielinska A, Carreiró F, Oliveira AM et al (2020) Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules 25:3731. https://doi.org/10.3390/molecules25163731
[DOI:
10.3390/molecules25163731]