State of the Art in Actuation of Micro/Nanorobots for Biomedical Applications.

Ahmed Elnaggar, Seungyeop Kang, Mingzhen Tian, Bing Han, Meysam Keshavarz
Author Information
  1. Ahmed Elnaggar: Mechanical Engineering Imperial College London Bessemer Building South Kensington Campus Exhibition Road Kensington London SW7 2AZ UK.
  2. Seungyeop Kang: The Hamlyn Centre for Robotic Surgery Imperial College London Bessemer Building South Kensington Campus Exhibition Road Kensington London SW7 2AZ UK. ORCID
  3. Mingzhen Tian: Institute of Medical Robotics School of Biomedical Engineering Shanghai Jiao Tong University Dongchuan Road Shanghai 200240 China.
  4. Bing Han: Institute of Medical Robotics School of Biomedical Engineering Shanghai Jiao Tong University Dongchuan Road Shanghai 200240 China.
  5. Meysam Keshavarz: Imperial College London Electrical and Electronic Engineering Bessemer Building South Kensington Campus Exhibition Road Kensington London SW7 2AZ UK. ORCID

Abstract

The emergence of micro/nanorobotics stands poised to revolutionize various biomedical applications, given its potential to offer precision, reduced invasiveness, and enhanced functionality. In the face of such potential, understanding the mechanisms that drive these tiny robots, especially their actuation techniques, becomes critical. Although there is a surge in research dedicated to micro/nanorobotics, there exists a gap in consolidating the diverse actuation strategies and their suitability for biomedical applications. This comprehensive review seeks to bridge this gap by providing an in-depth evaluation of the current actuation techniques employed by micro/nanorobots, particularly emphasizing their relevance and potential for clinical translation. The discussion starts by elucidating the different actuation strategies, ranging from magnetic, electric, acoustic, light-based, to chemical and biological mechanisms. Then, various examples and meticulous assessment of each technique are offered, spotlighting their respective merits and limitations within a biomedical context. This review illuminates the transformative capabilities of these actuation methods in medicine. It not only highlights the progress made in this burgeoning field but also underscores the areas that require further exploration and development.

Keywords

References

Sci Adv. 2022 Jul 15;8(28):eabo6163 [PMID: 35857516]
Nature. 2017 May 24;545(7655):406-408 [PMID: 28541344]
Sci Robot. 2021 Mar 17;6(52): [PMID: 34043551]
Small. 2016 Jan 20;12(3):371-80 [PMID: 26633744]
Nano Lett. 2015 Dec 9;15(12):8311-5 [PMID: 26587897]
Nat Rev Mater. 2022 Mar;7:235-249 [PMID: 35474944]
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:3399-402 [PMID: 17947026]
Angew Chem Int Ed Engl. 2015 Jan 26;54(5):1414-44 [PMID: 25504117]
Small. 2023 Oct;19(42):e2301489 [PMID: 37300342]
Nat Commun. 2021 Jan 18;12(1):411 [PMID: 33462214]
Small. 2019 Dec;15(52):e1905446 [PMID: 31782900]
Sci Robot. 2022 Oct 26;7(71):eabo0665 [PMID: 36288270]
Micromachines (Basel). 2022 Nov 19;13(11): [PMID: 36422457]
Small. 2022 Mar;18(9):e2105829 [PMID: 34889051]
Small. 2022 Jul;18(30):e2201417 [PMID: 35801427]
ACS Nano. 2015 Jan 27;9(1):117-23 [PMID: 25549040]
Adv Mater. 2017 Jun;29(24): [PMID: 28323360]
Small. 2022 Jun;18(22):e2200708 [PMID: 35535477]
Small. 2020 Oct;16(41):e1906908 [PMID: 32954642]
Adv Healthc Mater. 2020 May;9(9):e1901058 [PMID: 32196144]
ACS Nano. 2016 Apr 26;10(4):4763-9 [PMID: 26991933]
Nat Mach Intell. 2021 Feb;3(2):116-124 [PMID: 34258513]
Nano Lett. 2015 Jul 8;15(7):4412-6 [PMID: 26030270]
Nano Lett. 2019 Jun 12;19(6):3440-3447 [PMID: 30704240]
Nanoscale. 2019 Oct 10;11(39):18382-18392 [PMID: 31573587]
J Am Chem Soc. 2004 Oct 20;126(41):13424-31 [PMID: 15479099]
Beilstein J Nanotechnol. 2021 Jul 19;12:744-755 [PMID: 34367858]
Adv Mater. 2021 Jan;33(4):e2002047 [PMID: 33617105]
Nat Commun. 2014;5:3124 [PMID: 24469115]
Sci Adv. 2015 Dec 11;1(11):e1500501 [PMID: 26824056]
Small. 2017 May;13(19): [PMID: 28299891]
Nat Commun. 2020 Nov 5;11(1):5618 [PMID: 33154372]
ACS Appl Mater Interfaces. 2021 May 5;13(17):19633-19647 [PMID: 33877809]
Sci Adv. 2021 Jan 27;7(5): [PMID: 33571130]
Chem Rev. 2021 Apr 28;121(8):4999-5041 [PMID: 33787235]
J Am Chem Soc. 2016 Oct 26;138(42):13782-13785 [PMID: 27718566]
Adv Mater. 2013 Dec 3;25(45):6581-8 [PMID: 23996782]
J Mater Chem B. 2022 Jun 15;10(23):4509-4518 [PMID: 35616358]
Polymers (Basel). 2020 May 22;12(5): [PMID: 32455993]
Sci Robot. 2017 Mar 1;2(4): [PMID: 33157867]
Front Bioeng Biotechnol. 2018 Nov 14;6:170 [PMID: 30488033]
Small. 2022 Aug;18(34):e2202848 [PMID: 35905497]
Soft Robot. 2019 Feb;6(1):54-68 [PMID: 30312145]
Nat Commun. 2018 Jul 11;9(1):2684 [PMID: 29992966]
Adv Mater. 2012 Feb 7;24(6):811-6 [PMID: 22213276]
Int J Rob Res. 2009 Apr 1;28(4):571-582 [PMID: 19890435]
Small. 2015 Oct 21;11(39):5305-14 [PMID: 26296985]
Nanoscale. 2019 Jan 23;11(4):1636-1646 [PMID: 30644955]
ACS Nano. 2022 May 24;16(5):7547-7558 [PMID: 35486889]
Nat Commun. 2019 Feb 27;10(1):966 [PMID: 30814497]
Small. 2014 May 28;10(10):1953-7 [PMID: 24616145]
Asian J Pharm Sci. 2021 Jan;16(1):24-46 [PMID: 33613728]
Angew Chem Int Ed Engl. 2012 Jul 23;51(30):7519-22 [PMID: 22692791]
ACS Nano. 2022 Jul 26;16(7):10219-10230 [PMID: 35671037]
Sci Robot. 2020 Jan 22;5(38): [PMID: 33022593]
Chem Commun (Camb). 2008 Apr 7;(13):1533-5 [PMID: 18354790]
Angew Chem Int Ed Engl. 2021 Jul 12;60(29):16139-16148 [PMID: 33914416]
Small. 2020 Jun;16(24):e2000213 [PMID: 32431083]
ACS Appl Mater Interfaces. 2019 Feb 6;11(5):4745-4756 [PMID: 30638360]
Expert Opin Drug Deliv. 2019 Nov;16(11):1259-1275 [PMID: 31580731]
ACS Nano. 2018 Jan 23;12(1):327-337 [PMID: 29202221]
Sci Robot. 2018 Apr 25;3(17): [PMID: 33141741]
Front Neurosci. 2021 Aug 26;15:736730 [PMID: 34512256]
Adv Healthc Mater. 2023 Mar;12(8):e2202682 [PMID: 36502367]
Sci Adv. 2020 Sep 25;6(39): [PMID: 32978164]
ACS Nano. 2013 Oct 22;7(10):9232-40 [PMID: 23971861]
Nanoscale. 2015 Aug 28;7(32):13680-6 [PMID: 26214151]
Sci Adv. 2019 Apr 26;5(4):eaav4803 [PMID: 31032412]
ACS Nano. 2022 May 24;16(5):7615-7625 [PMID: 35451832]
Sci Robot. 2018 May 30;3(18): [PMID: 33141704]
Adv Sci (Weinh). 2020 Sep 21;7(20):2001120 [PMID: 33101852]
Nano Lett. 2014 Jan 8;14(1):305-10 [PMID: 24283342]
Chem Asian J. 2019 Jul 15;14(14):2497-2502 [PMID: 30985962]
Adv Healthc Mater. 2023 Nov;12(28):e2300939 [PMID: 37378647]
Micromachines (Basel). 2021 Apr 13;12(4): [PMID: 33924499]
Small. 2009 Jul;5(13):1569-74 [PMID: 19326356]
ACS Nano. 2020 Mar 24;14(3):2982-2993 [PMID: 32096976]
Adv Mater. 2020 Nov;32(44):e2003270 [PMID: 32930443]
Nat Mater. 2019 Nov;18(11):1244-1251 [PMID: 31235903]
Int J Rob Res. 2009 Sep 1;28(9):1169-1182 [PMID: 19890446]
Soft Robot. 2023 Apr;10(2):246-257 [PMID: 35704862]
Nature. 2020 Aug;584(7822):557-561 [PMID: 32848225]
Adv Mater. 2021 Dec;33(49):e2103505 [PMID: 34599770]
Comput Methods Programs Biomed. 2023 Jun;235:107546 [PMID: 37068450]
Micromachines (Basel). 2018 Mar 14;9(3): [PMID: 30424060]
Science. 2016 Jul 8;353(6295):158-62 [PMID: 27387948]
Int J Pharm. 2022 Mar 25;616:121551 [PMID: 35131352]
Nano Lett. 2016 Aug 10;16(8):4968-74 [PMID: 27459382]
Cell Stem Cell. 2018 Mar 1;22(3):340-354 [PMID: 29499152]
Sci Robot. 2018 Jun 27;3(19): [PMID: 33141689]
Reproduction. 2020 Feb;159(2):R83-R96 [PMID: 31600732]
ACS Nano. 2023 Mar 14;17(5):5095-5107 [PMID: 36861648]
Adv Mater. 2019 Sep;31(37):e1901673 [PMID: 31379023]
ACS Nano. 2021 Nov 23;15(11):18048-18059 [PMID: 34664936]
Small. 2024 Jan;20(1):e2304607 [PMID: 37653591]
ACS Appl Mater Interfaces. 2019 Jul 3;11(26):23392-23400 [PMID: 31252507]
Nat Nanotechnol. 2007 Jul;2(7):441-9 [PMID: 18654330]
Nano Lett. 2017 Aug 9;17(8):5092-5098 [PMID: 28677387]
Adv Mater. 2013 Nov 6;25(41):5863-8 [PMID: 23864519]
J Control Release. 2022 Jan;341:702-715 [PMID: 34933051]
Mol Ther. 2016 Sep;24(9):1627-33 [PMID: 27375160]
Nat Commun. 2016 Mar 23;7:11085 [PMID: 27004764]
SN Appl Sci. 2021;3(12):857 [PMID: 34790889]
Nano Lett. 2021 Mar 10;21(5):1982-1991 [PMID: 33624495]
Sci Adv. 2020 Jul 08;6(28):eaba5855 [PMID: 32923590]
Nat Nanotechnol. 2016 Nov;11(11):941-947 [PMID: 27525475]
ACS Appl Mater Interfaces. 2022 Jul 6;14(26):30290-30298 [PMID: 35748802]
Sci Robot. 2021 Mar 24;6(52): [PMID: 34043546]
ACS Nano. 2019 Aug 27;13(8):8842-8853 [PMID: 31265246]
Nat Nanotechnol. 2013 May;8(5):336-40 [PMID: 23584215]
Cell. 1998 Apr 3;93(1):21-4 [PMID: 9546388]
Sci Robot. 2021 Mar 17;6(52): [PMID: 34043547]
Nano Lett. 2015 Jul 8;15(7):4829-33 [PMID: 26029795]
ACS Nano. 2014 Dec 23;8(12):12041-8 [PMID: 25415461]
Adv Mater. 2020 Oct;32(42):e2003013 [PMID: 32864804]
Invest Ophthalmol Vis Sci. 2013 Apr 23;54(4):2853-63 [PMID: 23518764]
Nat Commun. 2022 Apr 26;13(1):2239 [PMID: 35473915]
ACS Nano. 2016 Sep 27;10(9):8751-9 [PMID: 27598543]
Otolaryngol Head Neck Surg. 2019 Nov;161(5):814-822 [PMID: 31547769]
ACS Nano. 2020 Nov 24;14(11):15349-15360 [PMID: 33151055]
ACS Nano. 2022 Apr 26;16(4):6118-6133 [PMID: 35343677]
IEEE Trans Med Robot Bionics. 2020 May;2(2):176-187 [PMID: 32699833]
Adv Funct Mater. 2020 Dec 1;30(49): [PMID: 34483808]
ACS Nano. 2016 Feb 23;10(2):2652-60 [PMID: 26811982]
ACS Nano. 2014 Jun 24;8(6):6097-105 [PMID: 24806430]
ACS Nano. 2020 Mar 24;14(3):2880-2893 [PMID: 32125820]
Nature. 2005 Oct 6;437(7060):862-5 [PMID: 16208366]
Nat Commun. 2017 Aug 16;8(1):272 [PMID: 28814725]
ACS Nano. 2018 Feb 27;12(2):1179-1187 [PMID: 29303550]
Micromachines (Basel). 2018 Oct 23;9(11): [PMID: 30715039]
J Mater Chem B. 2014 May 7;2(17):2395-2408 [PMID: 32261411]
Sci Adv. 2021 Sep 03;7(36):eabh0273 [PMID: 34516907]
Sci Adv. 2022 Dec 14;8(50):eade6135 [PMID: 36516247]
ACS Nano. 2013 Jan 22;7(1):818-24 [PMID: 23234238]
Chem Rev. 2022 Mar 9;122(5):5365-5403 [PMID: 33522238]
Sci Robot. 2017 Nov 22;2(12): [PMID: 33157904]
ACS Nano. 2016 Jan 26;10(1):1522-8 [PMID: 26691444]
Front Robot AI. 2022 Nov 07;9:1027415 [PMID: 36420129]
Nanoscale. 2017 Aug 3;9(30):10619-10632 [PMID: 28534925]
Nat Commun. 2017 Oct 3;8(1):770 [PMID: 28974671]
Small. 2022 Jun;18(25):e2107888 [PMID: 35607749]
Sci Robot. 2020 Jun 10;5(43): [PMID: 33022613]
J Am Chem Soc. 2008 Mar 5;130(9):2760-1 [PMID: 18254632]
Mater Today Bio. 2020 Oct 30;8:100085 [PMID: 33299981]
Adv Healthc Mater. 2020 Apr;9(7):e1901710 [PMID: 32142216]
Angew Chem Int Ed Engl. 1998 Sep 18;37(17):2296-2307 [PMID: 29710952]
Comput Biol Med. 2022 Jul;146:105554 [PMID: 35569333]
Sci Rep. 2016 Aug 24;6:32135 [PMID: 27555465]
Nanoscale. 2014 Mar 7;6(5):2730-7 [PMID: 24463706]
J Am Chem Soc. 2018 Jun 27;140(25):7896-7903 [PMID: 29786426]
Angew Chem Int Ed Engl. 2014 Mar 17;53(12):3201-4 [PMID: 24677393]
Sci Robot. 2017 Jan 4;2(2): [PMID: 33157864]
Small. 2016 Nov;12(44):6098-6105 [PMID: 27600373]
Sci Rep. 2021 Jul 23;11(1):15122 [PMID: 34302003]
Soft Matter. 2023 Apr 26;19(16):2883-2890 [PMID: 36876990]
Acc Chem Res. 2017 Mar 21;50(3):492-497 [PMID: 28945409]
Nanoscale. 2020 Jul 2;12(25):13801-13810 [PMID: 32573588]
Nat Commun. 2016 Jul 22;7:12263 [PMID: 27447088]
Sci Adv. 2022 Nov 16;8(46):eabq8545 [PMID: 36399561]
ACS Nano. 2019 Mar 26;13(3):3353-3362 [PMID: 30742410]
Sci Adv. 2019 Jan 11;5(1):eaau9650 [PMID: 30746470]
J Bioenerg Biomembr. 2000 Oct;32(5):539-46 [PMID: 15254390]

Word Cloud

Similar Articles

Cited By