Yersinia pestis Actively Inhibits the Production of Extracellular Vesicles by Human Neutrophils.

Katelyn R Sheneman, Timothy D Cummins, Michael L Merchant, Joshua L Hood, Silvia M Uriarte, Matthew B Lawrenz
Author Information
  1. Katelyn R Sheneman: Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA. ORCID
  2. Timothy D Cummins: Department of Medicine and Proteomics Technology Center, University of Louisville, Louisville, Kentucky, USA. ORCID
  3. Michael L Merchant: Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA. ORCID
  4. Joshua L Hood: Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA. ORCID
  5. Silvia M Uriarte: Department of Oral Immunology & Infectious Disease, University of Louisville, Louisville, Kentucky, USA. ORCID
  6. Matthew B Lawrenz: Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA. ORCID

Abstract

Yersinia pestis is the etiologic agent of the plague. A hallmark of plague is subversion of the host immune response by disrupting host signalling pathways required for inflammation. This non-inflammatory environment permits bacterial colonization and has been shown to be essential for disease manifestation. Previous work has shown that Y. pestis inhibits phagocytosis and degranulation by neutrophils. Manipulation of these key vesicular trafficking pathways suggests that Y. pestis influences extracellular vesicle (EV) secretion, cargo selection, trafficking and/or maturation. Our goals were to define the EV population produced by neutrophils in response to Y. pestis and determine how these vesicles might influence inflammation. Towards these goals, EVs were isolated from human neutrophils infected with Y. pestis or a mutant lacking bacterial effector proteins known to manipulate host cell signalling. Mass spectrometry data revealed that cargoes packaged in EVs isolated from mutant infected cells were enriched with antimicrobial and cytotoxic proteins, contents which differed from uninfected and Y. pestis infected cells. Further, EVs produced in response to Y. pestis lacked inflammatory properties observed in those isolated from neutrophils responding to the mutant. Together, these data demonstrate that Y. pestis actively inhibits the production of antimicrobial EVs produced by neutrophils, likely contributing to immune evasion.

Keywords

References

mBio. 2020 Apr 14;11(2): [PMID: 32291301]
PLoS Pathog. 2016 Dec 2;12(12):e1006035 [PMID: 27911947]
Bioinformatics. 2024 Oct 1;40(10): [PMID: 39412445]
Tuberculosis (Edinb). 2012 May;92(3):218-25 [PMID: 22391089]
Int J Mol Sci. 2022 Mar 21;23(6): [PMID: 35328809]
PLoS Pathog. 2009 Oct;5(10):e1000639 [PMID: 19876394]
Infect Immun. 2018 Aug 22;86(9): [PMID: 29891548]
J Extracell Vesicles. 2014 Aug 04;3: [PMID: 25143819]
J Biol Chem. 2003 May 30;278(22):20083-90 [PMID: 12639953]
Traffic. 2005 Feb;6(2):131-43 [PMID: 15634213]
mBio. 2019 Dec 10;10(6): [PMID: 31822588]
J Extracell Vesicles. 2021 Aug;10(10):e12127 [PMID: 34377374]
Am J Pathol. 2005 May;166(5):1427-39 [PMID: 15855643]
PLoS Med. 2008 Jan 15;5(1):e3 [PMID: 18198939]
Proc Natl Acad Sci U S A. 2005 Dec 6;102(49):17786-91 [PMID: 16306265]
Biochem Soc Trans. 2021 Apr 30;49(2):881-891 [PMID: 33860784]
Cell Host Microbe. 2013 Sep 11;14(3):306-17 [PMID: 24034616]
J Leukoc Biol. 2021 Nov;110(5):917-925 [PMID: 33682200]
Curr Mol Med. 2013 Jan;13(1):24-57 [PMID: 22834835]
Infect Immun. 2020 Feb 20;88(3): [PMID: 31871100]
J Extracell Vesicles. 2024 Feb;13(2):e12404 [PMID: 38326288]
PLoS Pathog. 2024 Jan 25;20(1):e1011280 [PMID: 38271464]
Infect Immun. 1999 May;67(5):2567-74 [PMID: 10225922]
mBio. 2023 Oct 31;14(5):e0131023 [PMID: 37615436]
Glomerular Dis. 2022 Jul;2(3):121-131 [PMID: 36199623]
Cell Microbiol. 2012 Nov;14(11):1697-706 [PMID: 22882764]
J Proteome Res. 2020 Apr 3;19(4):1857-1862 [PMID: 32129078]
PLoS Pathog. 2011 Apr;7(4):e1002026 [PMID: 21533069]
Microb Pathog. 2006 May;40(5):234-43 [PMID: 16626927]
J Leukoc Biol. 2021 Apr;109(4):793-806 [PMID: 32946637]
Blood. 2007 Nov 1;110(9):3234-44 [PMID: 17666571]
Methods Mol Biol. 2019;2010:197-209 [PMID: 31177440]
Front Immunol. 2018 Feb 12;9:90 [PMID: 29483904]
Nat Immunol. 2023 Dec;24(12):2021-2031 [PMID: 37903858]
JAMA. 2000 May 3;283(17):2281-90 [PMID: 10807389]
Proc Natl Acad Sci U S A. 2014 May 20;111(20):7385-90 [PMID: 24799700]
Cells. 2019 Jul 15;8(7): [PMID: 31311206]
Front Immunol. 2018 Feb 19;9:272 [PMID: 29520273]
Infect Immun. 2018 Jan 22;86(2): [PMID: 29158431]
Trends Cell Biol. 2015 Jun;25(6):364-72 [PMID: 25683921]
Cell Microbiol. 2010 Aug;12(8):1064-82 [PMID: 20148898]
Virulence. 2017 Oct 3;8(7):1124-1147 [PMID: 28296562]
Biomedicines. 2024 Feb 15;12(2): [PMID: 38398037]
Am J Pathol. 1985 Apr;119(1):101-10 [PMID: 2984939]
Science. 2018 Nov 30;362(6418):1064-1069 [PMID: 30361383]
Infect Immun. 2007 Feb;75(2):697-705 [PMID: 17101642]
PLoS Pathog. 2013;9(4):e1003261 [PMID: 23592986]
Cell Host Microbe. 2010 May 20;7(5):376-87 [PMID: 20478539]
J Immunol. 2017 Mar 1;198(5):1974-1984 [PMID: 28122964]
mBio. 2018 Feb 20;9(1): [PMID: 29463656]
Sci Rep. 2015 Oct 13;5:14748 [PMID: 26458510]
Microbes Infect. 2016 Jan;18(1):21-9 [PMID: 26361732]
Nat Rev Microbiol. 2022 Nov;20(11):657-670 [PMID: 35641670]
Cell Microbiol. 2010 Jul;12(7):988-1001 [PMID: 20148901]
Sci Adv. 2020 Sep 16;6(38): [PMID: 32938681]
J Leukoc Biol. 2024 Nov 27;116(6):1223-1236 [PMID: 38809773]
F1000Res. 2019 Jul 11;8: [PMID: 31327994]
Cell Microbiol. 2001 May;3(5):301-10 [PMID: 11298653]
Science. 2005 Sep 9;309(5741):1739-41 [PMID: 16051750]
J Extracell Vesicles. 2019 Dec 9;9(1):1698889 [PMID: 31853340]
J Extracell Vesicles. 2015 May 14;4:27066 [PMID: 25979354]
J Biol Chem. 2008 Nov 14;283(46):31776-84 [PMID: 18786929]
Infect Immun. 2006 Sep;74(9):5126-31 [PMID: 16926404]
J Exp Med. 2009 Oct 26;206(11):2455-67 [PMID: 19808250]
Clin Microbiol Rev. 1997 Jan;10(1):35-66 [PMID: 8993858]
Blood. 2013 Jan 17;121(3):510-8 [PMID: 23144171]
PLoS Pathog. 2013;9(10):e1003679 [PMID: 24098126]
Nat Commun. 2024 May 1;15(1):3675 [PMID: 38693118]
J Immunol. 2018 Sep 1;201(5):1500-1509 [PMID: 29997122]
PLoS Pathog. 2020 May 11;16(5):e1008576 [PMID: 32392230]
PLoS Pathog. 2015 May 14;11(5):e1004893 [PMID: 25974210]
Infect Immun. 2004 Mar;72(3):1512-8 [PMID: 14977957]
J Immunol. 2012 Jul 15;189(2):777-85 [PMID: 22723519]
Elife. 2023 May 19;12: [PMID: 37204294]
J Biol Chem. 2014 Feb 21;289(8):5320-9 [PMID: 24398679]
PLoS One. 2010 Feb 18;5(2):e9279 [PMID: 20174624]
Microorganisms. 2021 May 26;9(6): [PMID: 34073384]
Cells. 2020 Dec 18;9(12): [PMID: 33353087]
Cell Host Microbe. 2016 Sep 14;20(3):296-306 [PMID: 27569559]
PLoS Biol. 2016 Jan 07;14(1):e1002336 [PMID: 26741884]
Front Cell Infect Microbiol. 2013 Feb 06;3:4 [PMID: 23390616]

Grants

  1. P20GM103436/NIGMS NIH HHS
  2. P20GM113226/NIGMS NIH HHS
  3. P20 GM103436/NIGMS NIH HHS
  4. R01AI148241/National Institute of Allergy and Infectious Diseases
  5. F31AI178999/National Institute of Allergy and Infectious Diseases
  6. R21 AI169423/NIAID NIH HHS
  7. R01 AI178106/NIAID NIH HHS
  8. /Jewish Heritage for Excellence Fund
  9. F31 AI178999/NIAID NIH HHS
  10. R01AI178106/National Institute of Allergy and Infectious Diseases
  11. P20 GM113226/NIGMS NIH HHS
  12. R01 AI148241/NIAID NIH HHS
  13. /University of Louisville Proteomics Technology Center
  14. R21AI169423/National Institute of Allergy and Infectious Diseases

MeSH Term

Humans
Yersinia pestis
Extracellular Vesicles
Neutrophils
Plague
Phagocytosis

Word Cloud

Similar Articles

Cited By