Yu Zhao, Jiahui Gong, Runjie Shi, Zerong Wu, Shengzhi Liu, Shuxin Chen, Yi Tao, Shouxin Li, Jingkui Tian
Ahmad P, Abdel Latef AAH, Rasool S et al (2016) Role of proteomics in crop stress tolerance. Front Plant Sci 7:1336. https://doi.org/10.3389/fpls.2016.01336
[DOI:
10.3389/fpls.2016.01336]
Ahmad J, Baig MA, Amna et al (2020a) Parthenium hysterophorus steps up Ca-regulatory pathway in defence against highlight intensities. Sci Rep 10:8934. https://doi.org/10.1038/s41598-020-65721-7
[DOI:
10.1038/s41598-020-65721-7]
Ahmad MA, Javed R, Adeel M et al (2020b) PEG 6000-stimulated drought stress improves the attributes of in vitro growth, steviol glycosides production, and antioxidant activities in Stevia rebaudiana Bertoni. Plants Basel Switz 9:1552. https://doi.org/10.3390/plants9111552
[DOI:
10.3390/plants9111552]
Akula R, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6:1720–1731. https://doi.org/10.4161/psb.6.11.17613
[DOI:
10.4161/psb.6.11.17613]
Alafari HA, Abd-Elgawad ME (2021) Differential expression gene/protein contribute to heat stress-responsive in Tetraena propinqua in Saudi Arabia. Saudi J Biol Sci 28:5017–5027. https://doi.org/10.1016/j.sjbs.2021.05.016
[DOI:
10.1016/j.sjbs.2021.05.016]
Asfaw KG, Liu Q, Xu X et al (2020) A mitochondria-targeted coenzyme Q peptoid induces superoxide dismutase and alleviates salinity stress in plant cells. Sci Rep 10:11563. https://doi.org/10.1038/s41598-020-68491-4
[DOI:
10.1038/s41598-020-68491-4]
Azimzadeh Z, Hassani A, Mandoulakani BA et al (2023) Intraspecific divergence in essential oil content, composition and genes expression patterns of monoterpene synthesis in Origanum vulgare subsp. vulgare and subsp. gracile under salinity stress. BMC Plant Biol 23:380. https://doi.org/10.1186/s12870-023-04387-5
[DOI:
10.1186/s12870-023-04387-5]
Baghalian K, Haghiry A, Naghavi MR, Mohammadi A (2008) Effect of saline irrigation water on agronomical and phytochemical characters of chamomile (Matricaria recutita L.). Sci Hortic 116:437–441. https://doi.org/10.1016/j.scienta.2008.02.014
[DOI:
10.1016/j.scienta.2008.02.014]
Bami SS, Khavari-Nejad RA, Ahadi AM, Rezayatmand Z (2021) TiO2 nanoparticles and salinity stress in relation to artemisinin production and ADS and DBR2 expression in Artemisia absinthium L. Braz J Biol Rev Brasleira Biol 82:e237214. https://doi.org/10.1590/1519-6984.237214
[DOI:
10.1590/1519-6984.237214]
Bamneshin M, Mirjalili MH, Naghavi MR et al (2022) Gene expression pattern and taxane biosynthesis in a cell suspension culture of Taxus baccata L. subjected to light and a phenylalanine ammonia lyase (PAL) inhibitor. J Photochem Photobiol B 234:112532. https://doi.org/10.1016/j.jphotobiol.2022.112532
[DOI:
10.1016/j.jphotobiol.2022.112532]
Bertrand A, Bipfubusa M, Castonguay Y et al (2016) A proteome analysis of freezing tolerance in red clover (Trifolium pratense L.). BMC Plant Biol 16:65. https://doi.org/10.1186/s12870-016-0751-2
[DOI:
10.1186/s12870-016-0751-2]
Bhattacharyya D, Sinha R, Ghanta S et al (2012) Proteins differentially expressed in elicited cell suspension culture of Podophyllum hexandrum with enhanced podophyllotoxin content. Proteome Sci 10:34. https://doi.org/10.1186/1477-5956-10-34
[DOI:
10.1186/1477-5956-10-34]
Bian Y, Deng X, Yan X et al (2017) Integrated proteomic analysis of Brachypodium distachyon roots and leaves reveals a synergistic network in the response to drought stress and recovery. Sci Rep 7:46183. https://doi.org/10.1038/srep46183
[DOI:
10.1038/srep46183]
Biba R, Cvjetko P, Tkalec M et al (2022) Effects of silver nanoparticles on physiological and proteomic responses of tobacco (Nicotiana tabacum) seedlings are coating-dependent. Int J Mol Sci 23:15923. https://doi.org/10.3390/ijms232415923
[DOI:
10.3390/ijms232415923]
Bijalwan P, Sharma M, Kaushik P (2022) Review of the effects of drought stress on plants: a systematic approach. Preprints. https://doi.org/10.20944/preprints202202.0014.v1
[DOI:
10.20944/preprints202202.0014.v1]
Cai Z, Liu X, Chen H et al (2021a) Variations in morphology, physiology, and multiple bioactive constituents of Lonicerae japonicae Flos under salt stress. Sci Rep 11:1–15. https://doi.org/10.1038/s41598-021-83566-6
[DOI:
10.1038/s41598-021-83566-6]
Cai Z, Wang C, Chen C et al (2021b) Omics map of bioactive constituents in Lonicera japonica flowers under salt stress. Ind Crops Prod 167:113526. https://doi.org/10.1016/j.indcrop.2021.113526
[DOI:
10.1016/j.indcrop.2021.113526]
Cao D, Zhang W, Yang N et al (2023) Proteomic and metabolomic analyses uncover integrative mechanisms in Sesuvium portulacastrum tolerance to salt stress. Front Plant Sci 14:1277762. https://doi.org/10.3389/fpls.2023.1277762
[DOI:
10.3389/fpls.2023.1277762]
Chang H, Wu T, Shalmani A et al (2024) Heat shock protein HvHSP16.9 from wild barley enhances tolerance to salt stress. Physiol Mol Biol Plants Int J Funct Plant Biol 30:687–704. https://doi.org/10.1007/s12298-024-01455-4
[DOI:
10.1007/s12298-024-01455-4]
Chen S-L, Yu H, Luo H-M et al (2016) Conservation and sustainable use of medicinal plants: problems, progress, and prospects. Chin Med 11:37. https://doi.org/10.1186/s13020-016-0108-7
[DOI:
10.1186/s13020-016-0108-7]
Chen Z, Xu J, Wang F et al (2019) Morpho-physiological and proteomic responses to water stress in two contrasting tobacco varieties. Sci Rep 9:18523. https://doi.org/10.1038/s41598-019-54995-1
[DOI:
10.1038/s41598-019-54995-1]
Chen C, Wang C, Liu Z et al (2020a) iTRAQ-based proteomic technique provides insights into salt stress responsive proteins in Apocyni Veneti Folium (Apocynum venetum L.). Environ Exp Bot 180:104247. https://doi.org/10.1016/j.envexpbot.2020.104247
[DOI:
10.1016/j.envexpbot.2020.104247]
Chen Q, Shi J, Mu B et al (2020b) Metabolomics combined with proteomics provides a novel interpretation of the changes in nonvolatile compounds during white tea processing. Food Chem 332:127412. https://doi.org/10.1016/j.foodchem.2020.127412
[DOI:
10.1016/j.foodchem.2020.127412]
Chen X, Tao H, Wu Y, Xu X (2022) Effects of Cadmium on metabolism of photosynthetic pigment and photosynthetic system in Lactuca sativa L. revealed by physiological and proteomics analysis. Sci Hortic 305:111371. https://doi.org/10.1016/j.scienta.2022.111371
[DOI:
10.1016/j.scienta.2022.111371]
Contreras A, Leroy B, Mariage P-A, Wattiez R (2019) Proteomic analysis reveals novel insights into tanshinones biosynthesis in Salvia miltiorrhiza hairy roots. Sci Rep 9:5768. https://doi.org/10.1038/s41598-019-42164-3
[DOI:
10.1038/s41598-019-42164-3]
Cui J, Zhang E, Zhang X, Wang Q (2021) Silicon alleviates salinity stress in licorice (Glycyrrhiza uralensis) by regulating carbon and nitrogen metabolism. Sci Rep 11:1115. https://doi.org/10.1038/s41598-020-80739-7
[DOI:
10.1038/s41598-020-80739-7]
Çulha Erdal Ş, Eyidoğan F, Ekmekçi Y (2021) Comparative physiological and proteomic analysis of cultivated and wild safflower response to drought stress and re-watering. Physiol Mol Biol Plants Int J Funct Plant Biol 27:281–295. https://doi.org/10.1007/s12298-021-00934-2
[DOI:
10.1007/s12298-021-00934-2]
Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679. https://doi.org/10.1146/annurev-arplant-042809-112122
[DOI:
10.1146/annurev-arplant-042809-112122]
Das P, Khare P, Singh RP et al (2021) Arsenic-induced differential expression of oxidative stress and secondary metabolite content in two genotypes of Andrographis paniculata. J Hazard Mater 406:124302. https://doi.org/10.1016/j.jhazmat.2020.124302
[DOI:
10.1016/j.jhazmat.2020.124302]
Datta T, Kumar RS, Sinha H, Trivedi PK (2024) Small but mighty: peptides regulating abiotic stress responses in plants. Plant Cell Environ 47:1207–1223. https://doi.org/10.1111/pce.14792
[DOI:
10.1111/pce.14792]
Desgagné-Penix I, Khan MF, Schriemer DC et al (2010) Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures. BMC Plant Biol 10:252. https://doi.org/10.1186/1471-2229-10-252
[DOI:
10.1186/1471-2229-10-252]
Doimo L, Mackay DC, Rintoul GB et al (1999) Citronellol: geraniol ratios and temperature in geranium (Pelargonium hybrid). J Hortic Sci Biotechnol 74:528–530. https://doi.org/10.1080/14620316.1999.11511147
[DOI:
10.1080/14620316.1999.11511147]
Dong Q, Wallrad L, Almutairi BO, Kudla J (2022) Ca signaling in plant responses to abiotic stresses. J Integr Plant Biol 64:287–300. https://doi.org/10.1111/jipb.13228
[DOI:
10.1111/jipb.13228]
Dos Santos SK, da Silva GD, de Oliveira AFP et al (2023) Water stress and exogenous carnitine on growth and essential oil profile of Eryngium foetidum L. 3 Biotech 13:328. https://doi.org/10.1007/s13205-023-03757-y
[DOI:
10.1007/s13205-023-03757-y]
Du W, Ruan C, Li J et al (2021) Quantitative proteomic analysis of Xanthoceras sorbifolium Bunge seedlings in response to drought and heat stress. Plant Physiol Biochem PPB 160:8–17. https://doi.org/10.1016/j.plaphy.2021.01.002
[DOI:
10.1016/j.plaphy.2021.01.002]
Duan D, Tong J, Xu Q et al (2020) Regulation mechanisms of humic acid on Pb stress in tea plant (Camellia sinensis L.). Environ Pollut 267:115546. https://doi.org/10.1016/j.envpol.2020.115546
[DOI:
10.1016/j.envpol.2020.115546]
Facchini PJ, Bohlmann J, Covello PS et al (2012) Synthetic biosystems for the production of high-value plant metabolites. Trends Biotechnol 30:127–131. https://doi.org/10.1016/j.tibtech.2011.10.001
[DOI:
10.1016/j.tibtech.2011.10.001]
Fan M, Zhang Y, Li X et al (2022) Multi-approach analysis reveals pathways of cold tolerance divergence in Camellia japonica. Front Plant Sci 13:811791. https://doi.org/10.3389/fpls.2022.811791
[DOI:
10.3389/fpls.2022.811791]
Fancy NN, Bahlmann A-K, Loake GJ (2017) Nitric oxide function in plant abiotic stress. Plant Cell Environ 40:462–472. https://doi.org/10.1111/pce.12707
[DOI:
10.1111/pce.12707]
Farhat N, Belghith I, Senkler J et al (2019) Recovery aptitude of the halophyte Cakile maritima upon water deficit stress release is sustained by extensive modulation of the leaf proteome. Ecotoxicol Environ Saf 179:198–211. https://doi.org/10.1016/j.ecoenv.2019.04.072
[DOI:
10.1016/j.ecoenv.2019.04.072]
Fei J, Wang Y-S, Cheng H et al (2021) Comparative physiological and proteomic analyses of mangrove plant Kandelia obovata under cold stress. Ecotoxicol Lond Engl 30:1826–1840. https://doi.org/10.1007/s10646-021-02483-6
[DOI:
10.1007/s10646-021-02483-6]
Felipe SHS, Batista DS, Vital CE et al (2019) Salinity-induced modifications on growth, physiology and 20-hydroxyecdysone levels in Brazilian-ginseng [Pfaffia glomerata (Spreng.) Pedersen]. Plant Physiol Biochem PPB 140:43–54. https://doi.org/10.1016/j.plaphy.2019.05.002
[DOI:
10.1016/j.plaphy.2019.05.002]
Fortini EA, Batista DS, Sousa Felipe SH et al (2023) Physiological, epigenetic, and proteomic responses in Pfaffia glomerata growth in vitro under salt stress and 5-azacytidine. Protoplasma 260:467–482. https://doi.org/10.1007/s00709-022-01789-4
[DOI:
10.1007/s00709-022-01789-4]
Foyer CH, Neukermans J, Queval G et al (2012) Photosynthetic control of electron transport and the regulation of gene expression. J Exp Bot 63:1637–1661. https://doi.org/10.1093/jxb/ers013
[DOI:
10.1093/jxb/ers013]
Francavilla C (2023) Surviving under stress conditions. Nat Struct Mol Biol 30:1609–1611. https://doi.org/10.1038/s41594-023-01116-2
[DOI:
10.1038/s41594-023-01116-2]
Gandra J, Patel HK, Kumar SA et al (2022) Metabolomic and proteomic signature of Gloriosa superba leaves treated with mercuric chloride and phenylalanine, a precursor of colchicine alkaloid. Ind Crops Prod 178:114557. https://doi.org/10.1016/j.indcrop.2022.114557
[DOI:
10.1016/j.indcrop.2022.114557]
Gao F, Ma P, Wu Y et al (2019) Quantitative proteomic analysis of the response to cold stress in jojoba, a tropical woody crop. Int J Mol Sci 20:243. https://doi.org/10.3390/ijms20020243
[DOI:
10.3390/ijms20020243]
Gao Q, Xu L, Li X et al (2022) Proteome and physiological analyses reveal tobacco (Nicotiana tabacum) peroxidase 7 (POD 7) functions in responses to copper stress. Transgenic Res 31:431–444. https://doi.org/10.1007/s11248-022-00310-0
[DOI:
10.1007/s11248-022-00310-0]
García-Campa L, Guerrero S, Lamelas L et al (2022) Chloroplast proteomics reveals transgenerational cross-stress priming in Pinus radiata. Environ Exp Bot 202:105009. https://doi.org/10.1016/j.envexpbot.2022.105009
[DOI:
10.1016/j.envexpbot.2022.105009]
Gengmao Z, Shihui L, Xing S et al (2015) The role of silicon in physiology of the medicinal plant (Lonicera japonica L.) under salt stress. Sci Rep 5:12696. https://doi.org/10.1038/srep12696
[DOI:
10.1038/srep12696]
Goharrizi KJ, Fatehi F, Nazari M et al (2020) Assessment of changes in the content of sulforaphane and expression levels of CYP79F1 and myrosinase genes and proteomic profile of Lepidium draba plant under water-deficit stress induced by polyethylene glycol. ACTA Physiol Plant 42:101. https://doi.org/10.1007/s11738-020-03085-1
[DOI:
10.1007/s11738-020-03085-1]
Gong Z, Xiong L, Shi H et al (2020) Plant abiotic stress response and nutrient use efficiency. Sci China Life Sci 63:635–674. https://doi.org/10.1007/s11427-020-1683-x
[DOI:
10.1007/s11427-020-1683-x]
Gorgini Shabankareh H, Khorasaninejad S, Soltanloo H, Shariati V (2021) Physiological response and secondary metabolites of three lavender genotypes under water deficit. Sci Rep 11:19164. https://doi.org/10.1038/s41598-021-98750-x
[DOI:
10.1038/s41598-021-98750-x]
Gu L, Zheng W, Li M et al (2018) Integrated analysis of transcriptomic and proteomics data reveals the induction effects of rotenoid biosynthesis of Mirabilis himalaica caused by UV-B radiation. Int J Mol Sci 19:3324. https://doi.org/10.3390/ijms19113324
[DOI:
10.3390/ijms19113324]
Gu H, Wang Y, Xie H et al (2020) Drought stress triggers proteomic changes involving lignin, flavonoids and fatty acids in tea plants. Sci Rep 10:15504. https://doi.org/10.1038/s41598-020-72596-1
[DOI:
10.1038/s41598-020-72596-1]
Guerrero S, Roces V, García-Campa L et al (2024) Proteomic dynamics revealed sex-biased responses to combined heat-drought stress in Marchantia. J Integr Plant Biol. https://doi.org/10.1111/jipb.13753
[DOI:
10.1111/jipb.13753]
Guo W, Li G, Wang N et al (2020) A Na/H antiporter, K2-NhaD, improves salt and drought tolerance in cotton (Gossypium hirsutum L.). Plant Mol Biol 102:553–567. https://doi.org/10.1007/s11103-020-00969-1
[DOI:
10.1007/s11103-020-00969-1]
Han X, Yang F, Zhao Y et al (2021) iTRAQ based protein profile analysis revealed key proteins involved in regulation of drought-tolerance during seed germination in Adzuki bean. Sci Rep 11:23725. https://doi.org/10.1038/s41598-021-03178-y
[DOI:
10.1038/s41598-021-03178-y]
Hashiguchi A, Tian J, Komatsu S (2017) Proteomic contributions to medicinal plant research: from plant metabolism to pharmacological action. Proteomes 5:35. https://doi.org/10.3390/proteomes5040035
[DOI:
10.3390/proteomes5040035]
Hazrati R, Zare N, Asghari R et al (2022) Biologically synthesized CuO nanoparticles induce physiological, metabolic, and molecular changes in the hazel cell cultures. Appl Microbiol Biotechnol 106:6017–6031. https://doi.org/10.1007/s00253-022-12107-6
[DOI:
10.1007/s00253-022-12107-6]
Henkes S, Sonnewald U, Badur R et al (2001) A small decrease of plastid transketolase activity in antisense tobacco transformants has dramatic effects on photosynthesis and phenylpropanoid metabolism. Plant Cell 13:535–551. https://doi.org/10.1105/tpc.13.3.535
[DOI:
10.1105/tpc.13.3.535]
Hou J, Ai M, Li J et al (2024) Exogenous salicylic acid treatment enhances the disease resistance of Panax vietnamensis by regulating secondary metabolite production. Front Plant Sci 15:1428272. https://doi.org/10.3389/fpls.2024.1428272
[DOI:
10.3389/fpls.2024.1428272]
Hu Z, Liu A, Bi A et al (2017) Identification of differentially expressed proteins in bermudagrass response to cold stress in the presence of ethylene. Environ Exp Bot 139:67–78. https://doi.org/10.1016/j.envexpbot.2017.04.001
[DOI:
10.1016/j.envexpbot.2017.04.001]
Hua Y, Wang S, Liu Z et al (2016) iTRAQ-based quantitative proteomic analysis of cultivated Pseudostellaria heterophylla and its wild-type. J PROTEOMICS 139:13–25. https://doi.org/10.1016/j.jprot.2016.02.027
[DOI:
10.1016/j.jprot.2016.02.027]
Huang W, Ma H-Y, Huang Y et al (2017) Comparative proteomic analysis provides novel insights into chlorophyll biosynthesis in celery under temperature stress. Physiol Plant 161:468–485. https://doi.org/10.1111/ppl.12609
[DOI:
10.1111/ppl.12609]
Huibo Z, Yong Z, Rui L et al (2023) Analysis of the mechanism of Ricinus communis L. tolerance to Cd metal based on proteomics and metabolomics. PLoS ONE 18:e0272750. https://doi.org/10.1371/journal.pone.0272750
[DOI:
10.1371/journal.pone.0272750]
Huihui Z, Xin L, Yupeng G et al (2020a) Physiological and proteomic responses of reactive oxygen species metabolism and antioxidant machinery in mulberry (Morus alba L.) seedling leaves to NaCl and NaHCO3 stress. Ecotoxicol Environ Saf 193:110259. https://doi.org/10.1016/j.ecoenv.2020.110259
[DOI:
10.1016/j.ecoenv.2020.110259]
Huihui Z, Yue W, Xin L et al (2020b) Chlorophyll synthesis and the photoprotective mechanism in leaves of mulberry (Morus alba L.) seedlings under NaCl and NaHCO3 stress revealed by TMT-based proteomics analyses. Ecotoxicol Environ Saf 190:110164. https://doi.org/10.1016/j.ecoenv.2020.110164
[DOI:
10.1016/j.ecoenv.2020.110164]
Islam MJ, Ryu BR, Rahman MH et al (2022) Cannabinoid accumulation in hemp depends on ROS generation and interlinked with morpho-physiological acclimation and plasticity under indoor LED environment. Front Plant Sci 13:984410. https://doi.org/10.3389/fpls.2022.984410
[DOI:
10.3389/fpls.2022.984410]
Jadaun JS, Sangwan NS, Narnoliya LK et al (2017) Over-expression of DXS gene enhances terpenoidal secondary metabolite accumulation in rose-scented geranium and Withania somnifera: active involvement of plastid isoprenogenic pathway in their biosynthesis. Physiol Plant 159:381–400. https://doi.org/10.1111/ppl.12507
[DOI:
10.1111/ppl.12507]
Jamshidi Goharrizi K, Baghizadeh A, Kalantar M, Fatehi F (2020) Assessment of changes in some biochemical traits and proteomic profile of UCB-1 pistachio rootstock leaf under salinity stress. J Plant Growth Regul 39:608–630. https://doi.org/10.1007/s00344-019-10004-3
[DOI:
10.1007/s00344-019-10004-3]
Jan N, Majeed U, Wani MA et al (2023a) Analysis of physiological and proteomic changes in marigold (Calendula officinalis) in response to short term cold stress. South Afr J Bot 158:31–48. https://doi.org/10.1016/j.sajb.2023.04.047
[DOI:
10.1016/j.sajb.2023.04.047]
Jan N, Wani UM, Wani MA et al (2023b) Comparative physiological, antioxidant and proteomic investigation reveal robust response to cold stress in Digitalis purpurea L. Mol Biol Rep 50:7319–7331. https://doi.org/10.1007/s11033-023-08635-7
[DOI:
10.1007/s11033-023-08635-7]
Jang S-N, Kang M-J, Kim YN et al (2023) Physiological and biochemical responses of Limonium tetragonum to NaCl concentrations in hydroponic solution. Front Plant Sci 14:1159625. https://doi.org/10.3389/fpls.2023.1159625
[DOI:
10.3389/fpls.2023.1159625]
Jin H, Yu H, Wang H, Zhang J (2020) Comparative proteomic analysis of Dipsacus asperoides roots from different habitats in China. Molecules 25:3605. https://doi.org/10.3390/molecules25163605
[DOI:
10.3390/molecules25163605]
Jin Q, Yang K, Zhang Y et al (2024) Physiological and molecular mechanisms of silicon and potassium on mitigating iron-toxicity stress in Panax ginseng. Plant Physiol Biochem PPB 215:108975. https://doi.org/10.1016/j.plaphy.2024.108975
[DOI:
10.1016/j.plaphy.2024.108975]
Jogawat A, YadavChhaya B et al (2021) Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: a review. Physiol Plant 172:1106–1132. https://doi.org/10.1111/ppl.13328
[DOI:
10.1111/ppl.13328]
Jung J-Y, Min CW, Jang JW et al (2023) Proteomic analysis reveals a critical role of the glycosyl hydrolase 17 protein in Panax ginseng leaves under salt stress. Int J Mol Sci 24:3693. https://doi.org/10.3390/ijms24043693
[DOI:
10.3390/ijms24043693]
Kahn P (1995) from genome to proteome: looking at a cell’s proteins. Science 270:369–370. https://doi.org/10.1126/science.270.5235.369
[DOI:
10.1126/science.270.5235.369]
Khodadadi E, Fakheri BA, Aharizad S et al (2017) Leaf proteomics of drought-sensitive and -tolerant genotypes of fennel. Biochim Biophys Acta 1865:1433–1444. https://doi.org/10.1016/j.bbapap.2017.08.012
[DOI:
10.1016/j.bbapap.2017.08.012]
Kiiskila JD, Sarkar D, Datta R (2021) Differential protein abundance of vetiver grass in response to acid mine drainage. Physiol Plant 173:829–842. https://doi.org/10.1111/ppl.13477
[DOI:
10.1111/ppl.13477]
Kim D-Y, Jin J-Y, Alejandro S et al (2010) Overexpression of AtABCG36 improves drought and salt stress resistance in Arabidopsis. Physiol Plant 139:170–180. https://doi.org/10.1111/j.1399-3054.2010.01353.x
[DOI:
10.1111/j.1399-3054.2010.01353.x]
Kim HC, Peng M, Liu S et al (2018) Comparative proteomic analysis reveals the adaptation of Herpetospermum pedunculosum to an altitudinal gradient in the Tibetan Plateau. Biochem Syst Ecol 80:1–10. https://doi.org/10.1016/j.bse.2018.04.015
[DOI:
10.1016/j.bse.2018.04.015]
Kim SW, Gupta R, Min CW et al (2019) Label-free quantitative proteomic analysis of Panax ginseng leaves upon exposure to heat stress. J Ginseng Res 43:143–153. https://doi.org/10.1016/j.jgr.2018.09.005
[DOI:
10.1016/j.jgr.2018.09.005]
Knight MR, Knight H (2012) Low-temperature perception leading to gene expression and cold tolerance in higher plants. New Phytol 195:737–751. https://doi.org/10.1111/j.1469-8137.2012.04239.x
[DOI:
10.1111/j.1469-8137.2012.04239.x]
Kosová K, Vítámvás P, Prášil IT, Renaut J (2011) Plant proteome changes under abiotic stress—contribution of proteomics studies to understanding plant stress response. J Proteomics 74:1301–1322. https://doi.org/10.1016/j.jprot.2011.02.006
[DOI:
10.1016/j.jprot.2011.02.006]
Kosová K, Vítámvás P, Urban MO et al (2015) Biological networks underlying abiotic stress tolerance in temperate crops—a proteomic perspective. Int J Mol Sci 16:20913–20942. https://doi.org/10.3390/ijms160920913
[DOI:
10.3390/ijms160920913]
Kumar N, Kumawat S, Khatri P et al (2020a) Understanding aquaporin transport system in highly stress-tolerant and medicinal plant species Jujube (Ziziphus jujuba Mill.). J Biotechnol 324:103–111. https://doi.org/10.1016/j.jbiotec.2020.09.026
[DOI:
10.1016/j.jbiotec.2020.09.026]
Kumar R, Joshi R, Kumari M et al (2020b) Elevated CO and temperature influence key proteins and metabolites associated with photosynthesis, antioxidant and carbon metabolism in Picrorhiza kurroa. J Proteomics 219:103755. https://doi.org/10.1016/j.jprot.2020.103755
[DOI:
10.1016/j.jprot.2020.103755]
Kumari A, Pandey-Rai S (2018) Enhanced arsenic tolerance and secondary metabolism by modulation of gene expression and proteome profile in Artemisia annua L. after application of exogenous salicylic acid. Plant Physiol Biochem 132:590–602. https://doi.org/10.1016/j.plaphy.2018.10.010
[DOI:
10.1016/j.plaphy.2018.10.010]
Kundrátová K, Bartas M, Pečinka P et al (2021) Transcriptomic and proteomic analysis of drought stress response in Opium Poppy plants during the first week of germination. Plants Basel Switz 10:1878. https://doi.org/10.3390/plants10091878
[DOI:
10.3390/plants10091878]
Li X, Yang Y, Yang S et al (2016) Comparative proteomics analyses of intraspecific differences in the response of Stipa purpurea to drought. Plant Divers 38:101–117. https://doi.org/10.1016/j.pld.2016.03.002
[DOI:
10.1016/j.pld.2016.03.002]
Li M, Zhang K, Long R et al (2017a) iTRAQ-based comparative proteomic analysis reveals tissue-specific and novel early-stage molecular mechanisms of salt stress response in Carex rigescens. Environ Exp Bot 143:99–114. https://doi.org/10.1016/j.envexpbot.2017.08.010
[DOI:
10.1016/j.envexpbot.2017.08.010]
Li Z, Yuan S, Jia H et al (2017b) Ectopic expression of a cyanobacterial flavodoxin in creeping bentgrass impacts plant development and confers broad abiotic stress tolerance. Plant Biotechnol J 15:433–446. https://doi.org/10.1111/pbi.12638
[DOI:
10.1111/pbi.12638]
Li J, Chen X, Zhong L et al (2019a) Comparative iTRAQ-based proteomic analysis provides insight into a complex regulatory network of Pogostemon cablin in response to exogenous MeJA and Ethrel. Ind Crops Prod 140:111661. https://doi.org/10.1016/j.indcrop.2019.111661
[DOI:
10.1016/j.indcrop.2019.111661]
Li L-Q, Lyu C-C, Li J-H et al (2019b) Physiological analysis and proteome quantification of alligator weed stems in response to potassium deficiency stress. Int J Mol Sci 20:221. https://doi.org/10.3390/ijms20010221
[DOI:
10.3390/ijms20010221]
Li J, Cui J, Cheng D et al (2020a) iTRAQ protein profile analysis of sugar beet under salt stress: different coping mechanisms in leaves and roots. BMC Plant Biol 20:347. https://doi.org/10.1186/s12870-020-02552-8
[DOI:
10.1186/s12870-020-02552-8]
Li J, Essemine J, Shang C et al (2020b) Combined proteomics and metabolism analysis unravels prominent roles of antioxidant system in the prevention of alfalfa (Medicago sativa L.) against salt stress. Int J Mol Sci 21:909. https://doi.org/10.3390/ijms21030909
[DOI:
10.3390/ijms21030909]
Li L-Q, Lyu C-C, Li J-H et al (2020c) Quantitative proteomic analysis of alligator weed leaves reveals that cationic peroxidase 1 plays vital roles in the potassium deficiency stress response. Int J Mol Sci 21:2537. https://doi.org/10.3390/ijms21072537
[DOI:
10.3390/ijms21072537]
Li Y, Kong D, Fu Y et al (2020d) The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol Biochem 148:80–89. https://doi.org/10.1016/j.plaphy.2020.01.006
[DOI:
10.1016/j.plaphy.2020.01.006]
Li Y, Li X, Zhang J et al (2021) Physiological and proteomic responses of contrasting alfalfa (Medicago sativa L.) varieties to high temperature stress. Front Plant Sci 12:753011. https://doi.org/10.3389/fpls.2021.753011
[DOI:
10.3389/fpls.2021.753011]
Li Y, Liu S, Shawky E et al (2022) SWATH-based quantitative proteomic analysis of Morus alba L. leaves after exposure to ultraviolet-B radiation and incubation in the dark. J Photochem Photobiol B 230:112443. https://doi.org/10.1016/j.jphotobiol.2022.112443
[DOI:
10.1016/j.jphotobiol.2022.112443]
Li C, Chen S, Wang Y (2023a) Physiological and proteomic changes of Castanopsis fissa in response to drought stress. Sci Rep 13:12567. https://doi.org/10.1038/s41598-023-39235-x
[DOI:
10.1038/s41598-023-39235-x]
Li X, Liu Q, Wu R et al (2023b) Proteomic analysis of the cold stress response of Ammopiptanthus mongolicus reveals the role of AmCHIA in its cold tolerance. Horticulturae 9:1114. https://doi.org/10.3390/horticulturae9101114
[DOI:
10.3390/horticulturae9101114]
Li Y, Liu S, Zhang D et al (2023c) Integrative omic analysis reveals the dynamic change in phenylpropanoid metabolism in Morus alba under different stress. Plants 12:3265. https://doi.org/10.3390/plants12183265
[DOI:
10.3390/plants12183265]
Li J, Zhang S, Lei P et al (2024a) Physiological and proteomic responses of the tetraploid Robinia pseudoacacia L. to high CO levels. Int J Mol Sci 25:5262. https://doi.org/10.3390/ijms25105262
[DOI:
10.3390/ijms25105262]
Li X, Zeng G, Du X et al (2024b) Effects of polyethylene and biodegradable microplastics on the physiology and metabolic profiles of dandelion. Environ Pollut Barking Essex 352:124116. https://doi.org/10.1016/j.envpol.2024.124116
[DOI:
10.1016/j.envpol.2024.124116]
Li Y, Yang J, Zhou J et al (2024c) Multi-omics revealed molecular mechanism of biphenyl phytoalexin formation in response to yeast extract-induced oxidative stress in Sorbus aucuparia suspension cells. Plant Cell Rep 43:62. https://doi.org/10.1007/s00299-024-03155-5
[DOI:
10.1007/s00299-024-03155-5]
Lian C, Zhang B, Yang J et al (2022) Validation of suitable reference genes by various algorithms for gene expression analysis in Isodon rubescens under different abiotic stresses. Sci Rep 12:19599. https://doi.org/10.1038/s41598-022-22397-5
[DOI:
10.1038/s41598-022-22397-5]
Ling L, An Y, Wang D et al (2022) Proteomic analysis reveals responsive mechanisms for saline-alkali stress in alfalfa. Plant Physiol Biochem 170:146–159. https://doi.org/10.1016/j.plaphy.2021.12.003
[DOI:
10.1016/j.plaphy.2021.12.003]
Liu Y-L, Zheng H-L (2021) Physiological and proteomic analyses of two acanthus species to tidal flooding stress. Int J Mol Sci 22:1055. https://doi.org/10.3390/ijms22031055
[DOI:
10.3390/ijms22031055]
Liu Y, Damaris RN, Yang P (2017) Proteomics analysis identified a DRT protein involved in arsenic resistance in Populus. Plant Cell Rep 36:1855–1869. https://doi.org/10.1007/s00299-017-2199-8
[DOI:
10.1007/s00299-017-2199-8]
Liu H, Wang F-F, Peng X-J et al (2019) Global phosphoproteomic analysis reveals the defense and response mechanisms of Jatropha Curcas seedling under chilling stress. Int J Mol Sci 20:208. https://doi.org/10.3390/ijms20010208
[DOI:
10.3390/ijms20010208]
Liu B, Zhang L, Rusalepp L et al (2021) Heat priming improved heat tolerance of photosynthesis, enhanced terpenoid and benzenoid emission and phenolics accumulation in Achillea millefolium. Plant Cell Environ 44:2365–2385. https://doi.org/10.1111/pce.13830
[DOI:
10.1111/pce.13830]
Liu A, Liu S, Li Y et al (2022a) Phosphoproteomics reveals regulation of secondary metabolites in Mahonia bealei exposed to ultraviolet-B radiation. Front Plant Sci 12:794906. https://doi.org/10.3389/fpls.2021.794906
[DOI:
10.3389/fpls.2021.794906]
Liu Y, Fan H, Dong J et al (2022b) Phosphoproteomics of cold stress-responsive mechanisms in Rhododendron chrysanthum. Mol Biol Rep 49:303–312. https://doi.org/10.1007/s11033-021-06874-0
[DOI:
10.1007/s11033-021-06874-0]
Liu M, Sun Q, Cao K et al (2023) Acetylated proteomics of UV-B stress-responsive in photosystem II of Rhododendron chrysanthum. Cells 12:478. https://doi.org/10.3390/cells12030478
[DOI:
10.3390/cells12030478]
Liu M, Gong F, Yu W et al (2024a) The rhododendron Chrysanthum Pall.s’ acetylation modification of rubisco enzymes controls carbon cycling to withstand UV-B stress. Biomolecules 14:732. https://doi.org/10.3390/biom14060732
[DOI:
10.3390/biom14060732]
Liu M, Sun L, Cao Y et al (2024b) Acetylation proteomics and metabolomics analyses reveal the involvement of starch synthase undergoing acetylation modification during UV-B stress resistance in Rhododendron Chrysanthum Pall. Hereditas 161:15. https://doi.org/10.1186/s41065-024-00320-4
[DOI:
10.1186/s41065-024-00320-4]
Luo Y, Zhang Y, Jiang Y et al (2023) iTRAQ-based proteomic and physiological analyses reveal the mechanisms of dehydration and cryopreservation tolerance of Sophora tonkinensis Gagnep. Seeds Plants Basel Switz 12:1842. https://doi.org/10.3390/plants12091842
[DOI:
10.3390/plants12091842]
Luyckx M, Hausman J-F, Sergeant K et al (2021) Molecular and biochemical insights into early responses of hemp to Cd and Zn exposure and the potential effect of Si on stress response. Front Plant Sci 12:711853. https://doi.org/10.3389/fpls.2021.711853
[DOI:
10.3389/fpls.2021.711853]
Ma L, Sun X, Kong X et al (2015) Physiological, biochemical and proteomics analysis reveals the adaptation strategies of the alpine plant Potentilla saundersiana at altitude gradient of the Northwestern Tibetan Plateau. J Proteomics 112:63–82. https://doi.org/10.1016/j.jprot.2014.08.009
[DOI:
10.1016/j.jprot.2014.08.009]
Ma R, Sun L, Chen X et al (2016) Proteomic analyses provide novel insights into plant growth and ginsenoside biosynthesis in forest cultivated Panax ginseng (F. Ginseng). Front Plant Sci 7:1. https://doi.org/10.3389/fpls.2016.00001
[DOI:
10.3389/fpls.2016.00001]
Ma T-L, Li W-J, Hong Y-S et al (2022) TMT based proteomic profiling of Sophora alopecuroides leaves reveal flavonoid biosynthesis processes in response to salt stress. J Proteomics 253:104457. https://doi.org/10.1016/j.jprot.2021.104457
[DOI:
10.1016/j.jprot.2021.104457]
Ma R, Yang P, Jing C et al (2023) Comparison of the metabolomic and proteomic profiles associated with triterpene and phytosterol accumulation between wild and cultivated ginseng. Plant Physiol Biochem 195:288–299. https://doi.org/10.1016/j.plaphy.2023.01.020
[DOI:
10.1016/j.plaphy.2023.01.020]
Mabizela GS, van der Rijst M, Slabbert MM et al (2023) Response of Cyclopia subternata to drought stress - assessment of leaf composition, proteomics and product quality. South Afr J Bot 161:96–112. https://doi.org/10.1016/j.sajb.2023.07.042
[DOI:
10.1016/j.sajb.2023.07.042]
Majroomi Senji B, Abdollahi Mandoulakani B (2018) The impact of cold stress on genes expression pattern of mono- and sesquiterpene biosynthesis and their contents in Ocimum basilicum L. Phytochemistry 156:250–256. https://doi.org/10.1016/j.phytochem.2018.09.006
[DOI:
10.1016/j.phytochem.2018.09.006]
Manivannan A, Soundararajan P, Park YG, Jeong BR (2021) Physiological and proteomic insights into red and blue light-mediated enhancement of in vitro growth in Scrophularia kakudensis—a potential medicinal plant. Front PLANT Sci 11:607007. https://doi.org/10.3389/fpls.2020.607007
[DOI:
10.3389/fpls.2020.607007]
Martínez-Esteso MJ, Martínez-Márquez A, Sellés-Marchart S et al (2015) The role of proteomics in progressing insights into plant secondary metabolism. Front Plant Sci 6:504. https://doi.org/10.3389/fpls.2015.00504
[DOI:
10.3389/fpls.2015.00504]
Mishra B, Chand S, Singh Sangwan N (2019) ROS management is mediated by ascorbate-glutathione-α-tocopherol triad in co-ordination with secondary metabolic pathway under cadmium stress in Withania somnifera. Plant Physiol Biochem 139:620–629. https://doi.org/10.1016/j.plaphy.2019.03.040
[DOI:
10.1016/j.plaphy.2019.03.040]
Mishra B, Bansal S, Tripathi S et al (2024) Differential regulation of key triterpene synthase gene under abiotic stress in Withania somnifera L. Dunal and its co-relation to sterols and withanolides. Plant Physiol Biochem 208:108419. https://doi.org/10.1016/j.plaphy.2024.108419
[DOI:
10.1016/j.plaphy.2024.108419]
Mittler R, Zandalinas SI, Fichman Y, Van Breusegem F (2022) Reactive oxygen species signalling in plant stress responses. Nat Rev Mol Cell Biol 23:663–679. https://doi.org/10.1038/s41580-022-00499-2
[DOI:
10.1038/s41580-022-00499-2]
Mohammadi H, Kazemi Z, Aghaee A et al (2023) Unraveling the influence of TiO nanoparticles on growth, physiological and phytochemical characteristics of Mentha piperita L. in cadmium-contaminated soil. Sci Rep 13:22280. https://doi.org/10.1038/s41598-023-49666-1
[DOI:
10.1038/s41598-023-49666-1]
Muhammad I, Shalmani A, Ali M et al (2021) Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. Front Plant Sci 11:615942. https://doi.org/10.3389/fpls.2020.615942
[DOI:
10.3389/fpls.2020.615942]
Mukarram M, Khan MMA, Zehra A et al (2022) Suffer or survive: decoding salt-sensitivity of lemongrass and its implication on essential oil productivity. Front Plant Sci 13:903954. https://doi.org/10.3389/fpls.2022.903954
[DOI:
10.3389/fpls.2022.903954]
Nadarajah KK (2020) ROS homeostasis in abiotic stress tolerance in plants. Int J Mol Sci 21:5208. https://doi.org/10.3390/ijms21155208
[DOI:
10.3390/ijms21155208]
Nakabayashi R, Saito K (2015) Selmar. Curr Opin Plant Biol 24:10–16. https://doi.org/10.1016/j.pbi.2015.01.003
[DOI:
10.1016/j.pbi.2015.01.003]
Nasrollahi V, Mirzaie-Asl A, Piri K et al (2014) The effect of drought stress on the expression of key genes involved in the biosynthesis of triterpenoid saponins in liquorice (Glycyrrhiza glabra). Phytochemistry 103:32–37. https://doi.org/10.1016/j.phytochem.2014.03.004
[DOI:
10.1016/j.phytochem.2014.03.004]
Niu X, Xu J, Chen T et al (2016) Proteomic changes in kenaf (Hibiscus cannabinus L.) leaves under salt stress. Ind Crops Prod 91:255–263. https://doi.org/10.1016/j.indcrop.2016.07.034
[DOI:
10.1016/j.indcrop.2016.07.034]
Omar SA, Ashokhan S, Abdul Majid N et al (2024) Enhanced azadirachtin production in neem (Azadirachta indica) callus through NaCl elicitation: insights into differential protein regulation via shotgun proteomics. Pestic Biochem Physiol 199:105778. https://doi.org/10.1016/j.pestbp.2024.105778
[DOI:
10.1016/j.pestbp.2024.105778]
Ounoki R, Ágh F, Hembrom R et al (2021) Salt stress affects plastid ultrastructure and photosynthetic activity but not the essential oil composition in spearmint (Mentha spicata L. var crispa “Moroccan”). Front Plant Sci 12:739467. https://doi.org/10.3389/fpls.2021.739467
[DOI:
10.3389/fpls.2021.739467]
Pakzad R, Fatehi F, Kalantar M, Maleki M (2019) Evaluating the antioxidant enzymes activities, lipid peroxidation and proteomic profile changing in UCB-1 pistachio rootstock leaf under drought stress. Sci Hortic 256:108617. https://doi.org/10.1016/j.scienta.2019.108617
[DOI:
10.1016/j.scienta.2019.108617]
Pan Q, Mustafa NR, Tang K et al (2016) Monoterpenoid indole alkaloids biosynthesis and its regulation in Catharanthus roseus: a literature review from genes to metabolites. Phytochem Rev 15:221–250. https://doi.org/10.1007/s11101-015-9406-4
[DOI:
10.1007/s11101-015-9406-4]
Pan L, Wan L, He L et al (2021) Comparative proteomic analysis of parasitic loranthus seeds exposed to dehydration stress. Plant Biotechnol Rep 15:95–108. https://doi.org/10.1007/s11816-020-00651-4
[DOI:
10.1007/s11816-020-00651-4]
Panda A, Rangani J, Parida AK (2020) Comprehensive proteomic analysis revealing multifaceted regulatory network of the xero-halophyte Haloxylon salicornicum involved in salt tolerance. J Biotechnol 324:143–161. https://doi.org/10.1016/j.jbiotec.2020.10.011
[DOI:
10.1016/j.jbiotec.2020.10.011]
Pang Q, Chen S, Dai S et al (2010) Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. J Proteome Res 9:2584–2599. https://doi.org/10.1021/pr100034f
[DOI:
10.1021/pr100034f]
Parkash J, Kashyap S, Kalita PJ et al (2014) Differential proteomics of Picrorhiza kurrooa Royle ex Benth. in response to dark stress. Mol Biol Rep 41:6051–6062. https://doi.org/10.1007/s11033-014-3482-1
[DOI:
10.1007/s11033-014-3482-1]
Peng Y, Lin W, Cai W, Arora R (2007) Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants. Planta 226:729–740. https://doi.org/10.1007/s00425-007-0520-4
[DOI:
10.1007/s00425-007-0520-4]
Peng C, Chang L, Yang Q et al (2019) Comparative physiological and proteomic analyses of the chloroplasts in halophyte Sesuvium portulacastrum under differential salt conditions. J Plant Physiol 232:141–150. https://doi.org/10.1016/j.jplph.2018.10.028
[DOI:
10.1016/j.jplph.2018.10.028]
Qian H, Xu Z, Cong K et al (2021) Transcriptomic responses to drought stress in Polygonatum kingianum tuber. BMC Plant Biol 21:537. https://doi.org/10.1186/s12870-021-03297-8
[DOI:
10.1186/s12870-021-03297-8]
Qin S, Liang Y, Wei G et al (2024) Shade responses and resistant mechanisms in Spatholobus suberectus. Heliyon 10:e28077. https://doi.org/10.1016/j.heliyon.2024.e28077
[DOI:
10.1016/j.heliyon.2024.e28077]
Rai A, Saito K, Yamazaki M (2017) Integrated omics analysis of specialized metabolism in medicinal plants. Plant J 90:764–787. https://doi.org/10.1111/tpj.13485
[DOI:
10.1111/tpj.13485]
Rampitsch C, Bykova NV (2012) The beginnings of crop phosphoproteomics: exploring early warning systems of stress. Front Plant Sci 3:144. https://doi.org/10.3389/fpls.2012.00144
[DOI:
10.3389/fpls.2012.00144]
Ranty B, Aldon D, Cotelle V et al (2016) Calcium sensors as key hubs in plant responses to biotic and abiotic stresses. Front Plant Sci 7:327. https://doi.org/10.3389/fpls.2016.00327
[DOI:
10.3389/fpls.2016.00327]
Rastogi S, Shah S, Kumar R et al (2019) Ocimum metabolomics in response to abiotic stresses: Cold, flood, drought and salinity. PLoS ONE 14:e0210903. https://doi.org/10.1371/journal.pone.0210903
[DOI:
10.1371/journal.pone.0210903]
Ren W, Ding B, Dong W et al (2024) Unveiling HSP40/60/70/90/100 gene families and abiotic stress response in Jerusalem artichoke. Gene 893:147912. https://doi.org/10.1016/j.gene.2023.147912
[DOI:
10.1016/j.gene.2023.147912]
Rezaei-Chiyaneh E, Mahdavikia H, Alipour H et al (2023) Biostimulants alleviate water deficit stress and enhance essential oil productivity: a case study with savory. Sci Rep 13:720. https://doi.org/10.1038/s41598-022-27338-w
[DOI:
10.1038/s41598-022-27338-w]
Rezaie R, Abdollahi Mandoulakani B, Fattahi M (2020) Cold stress changes antioxidant defense system, phenylpropanoid contents and expression of genes involved in their biosynthesis in Ocimum basilicum L. Sci Rep 10:5290. https://doi.org/10.1038/s41598-020-62090-z
[DOI:
10.1038/s41598-020-62090-z]
Rodrigues Neto JC, Salgado FF, Braga Italo O et al (2023) Osmoprotectants play a major role in the Portulaca oleracea resistance to high levels of salinity stress-insights from a metabolomics and proteomics integrated approach. Front Plant Sci 14:1187803. https://doi.org/10.3389/fpls.2023.1187803
[DOI:
10.3389/fpls.2023.1187803]
Rong T, Chunchun Z, Wei G et al (2021) Proteomic insights into protostane triterpene biosynthesis regulatory mechanism after MeJA treatment in Alisma orientale (Sam.) Juz. Biochim Biophys Acta 1869:140671. https://doi.org/10.1016/j.bbapap.2021.140671
[DOI:
10.1016/j.bbapap.2021.140671]
Rozanova S, Barkovits K, Nikolov M et al (2021) Quantitative mass spectrometry-based proteomics: an overview. Methods Mol Biol 2228:85–116. https://doi.org/10.1007/978-1-0716-1024-4_8
[DOI:
10.1007/978-1-0716-1024-4_8]
Sahithi BM, Razi K, Al Murad M et al (2021) Comparative physiological and proteomic analysis deciphering tolerance and homeostatic signaling pathways in chrysanthemum under drought stress. Physiol Plant 172:289–303. https://doi.org/10.1111/ppl.13142
[DOI:
10.1111/ppl.13142]
Sardar R, Zulfiqar A, Ahmed S et al (2022) Proteomic changes in various plant tissues associated with chromium stress in sunflower. Saudi J Biol Sci 29:2604–2612. https://doi.org/10.1016/j.sjbs.2021.12.042
[DOI:
10.1016/j.sjbs.2021.12.042]
Shaki F, Ebrahimzadeh Maboud H, Niknam V (2020) Differential proteomics: effect of growth regulators on salt stress responses in safflower seedlings. Pestic Biochem Physiol 164:149–155. https://doi.org/10.1016/j.pestbp.2020.01.006
[DOI:
10.1016/j.pestbp.2020.01.006]
Shen C-C, Chen M-X, Xiao T et al (2021a) Global proteome response to Pb(II) toxicity in poplar using SWATH-MS-based quantitative proteomics investigation. Ecotoxicol Environ Saf 220:112410. https://doi.org/10.1016/j.ecoenv.2021.112410
[DOI:
10.1016/j.ecoenv.2021.112410]
Shen Z-J, Qin Y-Y, Luo M-R et al (2021b) Proteome analysis reveals a systematic response of cold-acclimated seedlings of an exotic mangrove plant Sonneratia apetala to chilling stress. J Proteomics 248:104349. https://doi.org/10.1016/j.jprot.2021.104349
[DOI:
10.1016/j.jprot.2021.104349]
Shirazi Z, Aalami A, Tohidfar M, Sohani MM (2019) Triterpenoid gene expression and phytochemical content in Iranian licorice under salinity stress. Protoplasma 256:827–837. https://doi.org/10.1007/s00709-018-01340-4
[DOI:
10.1007/s00709-018-01340-4]
Shuken SR (2023) An introduction to mass spectrometry-based proteomics. J Proteome Res 22:2151–2171. https://doi.org/10.1021/acs.jproteome.2c00838
[DOI:
10.1021/acs.jproteome.2c00838]
Singh PK, Singh R, Singh S (2013) Cinnamic acid induced changes in reactive oxygen species scavenging enzymes and protein profile in maize (Zea mays L.) plants grown under salt stress. Physiol Mol Biol Plants Int J Funct Plant Biol 19:53–59. https://doi.org/10.1007/s12298-012-0126-6
[DOI:
10.1007/s12298-012-0126-6]
Singh R, Gupta P, Khan F et al (2018) Modulations in primary and secondary metabolic pathways and adjustment in physiological behaviour of Withania somnifera under drought stress. Plant Sci Int J Exp Plant Biol 272:42–54. https://doi.org/10.1016/j.plantsci.2018.03.029
[DOI:
10.1016/j.plantsci.2018.03.029]
Singh-Sangwan N, Abad Farooqi AH, Singh Sangwan R (1994) Effect of drought stress on growth and essential oil metabolism in lemongrasses. New Phytol 128:173–179. https://doi.org/10.1111/j.1469-8137.1994.tb04000.x
[DOI:
10.1111/j.1469-8137.1994.tb04000.x]
Singiri JR, Swetha B, Sikron-Persi N, Grafi G (2021) Differential response to single and combined salt and heat stresses: impact on accumulation of proteins and metabolites in dead pericarps of Brassica juncea. Int J Mol Sci 22:7076. https://doi.org/10.3390/ijms22137076
[DOI:
10.3390/ijms22137076]
Skodra C, Michailidis M, Moysiadis T et al (2023) Disclosing the molecular basis of salinity priming in olive trees using proteogenomic model discovery. Plant Physiol 191:1913–1933. https://doi.org/10.1093/plphys/kiac572
[DOI:
10.1093/plphys/kiac572]
Song Y, Liu J, Wang J, Liu F (2021) Growth, stoichiometry, and palatability of Suaeda salsa from different habitats are demonstrated by differentially expressed proteins and their enriched pathways. Front Plant Sci 12:733882. https://doi.org/10.3389/fpls.2021.733882
[DOI:
10.3389/fpls.2021.733882]
Song C, Fan Q, Tang Y et al (2022) Overexpression of DfRaf from fragrant woodfern (Dryopteris fragrans) enhances high-temperature tolerance in tobacco (Nicotiana tabacum). Genes 13:1212. https://doi.org/10.3390/genes13071212
[DOI:
10.3390/genes13071212]
Srivastava M, Singh G, Sharma S et al (2019) Elicitation enhanced the yield of glycyrrhizin and antioxidant activities in hairy root cultures of Glycyrrhiza glabra L. J Plant Growth Regul 38:373–384. https://doi.org/10.1007/s00344-018-9847-2
[DOI:
10.1007/s00344-018-9847-2]
Štefanić PP, Cvjetko P, Biba R et al (2018) Physiological, ultrastructural and proteomic responses of tobacco seedlings exposed to silver nanoparticles and silver nitrate. Chemosphere 209:640–653. https://doi.org/10.1016/j.chemosphere.2018.06.128
[DOI:
10.1016/j.chemosphere.2018.06.128]
Stone SL (2014) The role of ubiquitin and the 26S proteasome in plant abiotic stress signaling. Front Plant Sci 5:135. https://doi.org/10.3389/fpls.2014.00135
[DOI:
10.3389/fpls.2014.00135]
Sun H, Liu F, Sun L et al (2016) Proteomic analysis of amino acid metabolism differences between wild and cultivated Panax ginseng. J Ginseng Res 40:113–120. https://doi.org/10.1016/j.jgr.2015.06.001
[DOI:
10.1016/j.jgr.2015.06.001]
Sun J, Qiu C, Ding Y et al (2020) Fulvic acid ameliorates drought stress-induced damage in tea plants by regulating the ascorbate metabolism and flavonoids biosynthesis. BMC Genomics 21:411. https://doi.org/10.1186/s12864-020-06815-4
[DOI:
10.1186/s12864-020-06815-4]
Sun Y, Liu X, Li W et al (2023) The regulatory metabolic networks of the Brassica campestris L. hairy roots in response to cadmium stress revealed from proteome studies combined with a transcriptome analysis. Ecotoxicol Environ Saf 263:115214. https://doi.org/10.1016/j.ecoenv.2023.115214
[DOI:
10.1016/j.ecoenv.2023.115214]
Sun Q, Li X, Sun L et al (2024) Plant hormones and phenolic acids response to UV-B stress in Rhododendron chrysanthum pall. Biol Direct 19:40. https://doi.org/10.1186/s13062-024-00483-0
[DOI:
10.1186/s13062-024-00483-0]
Suo J, Zhang H, Zhao Q et al (2020) Na2CO3-responsive photosynthetic and ROS scavenging mechanisms in chloroplasts of alkaligrass revealed by phosphoproteomics. Genomics Proteomics Bioinformatics 18:271–288. https://doi.org/10.1016/j.gpb.2018.10.011
[DOI:
10.1016/j.gpb.2018.10.011]
Takshak S, Agrawal SB (2015) Defence strategies adopted by the medicinal plant Coleus forskohlii against supplemental ultraviolet-B radiation: augmentation of secondary metabolites and antioxidants. Plant Physiol Biochem 97:124–138. https://doi.org/10.1016/j.plaphy.2015.09.018
[DOI:
10.1016/j.plaphy.2015.09.018]
Talei D, Valdiani A, Rafii MY, Maziah M (2014) Proteomic analysis of the salt-responsive leaf and root proteins in the anticancer plant Andrographis paniculata nees. PLoS ONE 9:e112907. https://doi.org/10.1371/journal.pone.0112907
[DOI:
10.1371/journal.pone.0112907]
Talei D, Valdiani A, Maziah M et al (2015) Salt stress-induced protein pattern associated with photosynthetic parameters and andrographolide content in Andrographis paniculata Nees. Biosci Biotechnol Biochem 79:51–58. https://doi.org/10.1080/09168451.2014.963499
[DOI:
10.1080/09168451.2014.963499]
Thakur A, Kumar A, Kumar D et al (2024) Physiological and biochemical regulation of Valeriana jatamansi Jones under water stress. Plant Physiol Biochem PPB 208:108476. https://doi.org/10.1016/j.plaphy.2024.108476
[DOI:
10.1016/j.plaphy.2024.108476]
Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC PLANT Biol 16:86. https://doi.org/10.1186/s12870-016-0771-y
[DOI:
10.1186/s12870-016-0771-y]
Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13–25. https://doi.org/10.1023/A:1015871916833
[DOI:
10.1023/A]
Vierstra RD (2009) The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol 10:385–397. https://doi.org/10.1038/nrm2688
[DOI:
10.1038/nrm2688]
Wang M, Vannozzi A, Wang G et al (2014) Genome and transcriptome analysis of the grapevine (Vitis vinifera L.) WRKY gene family. Hortic Res 1:14016. https://doi.org/10.1038/hortres.2014.16
[DOI:
10.1038/hortres.2014.16]
Wang Y, Shen Y, Shen Z et al (2016) Comparative proteomic analysis of the response to silver ions and yeast extract in Salvia miltiorrhiza hairy root cultures. Plant Physiol Biochem 107:364–373. https://doi.org/10.1016/j.plaphy.2016.06.028
[DOI:
10.1016/j.plaphy.2016.06.028]
Wang LS, Li WL, Qi XW et al (2017) Physiological and proteomic response of Limonium bicolor to salinity. Russ J Plant Physiol 64:349–360. https://doi.org/10.1134/S1021443717030190
[DOI:
10.1134/S1021443717030190]
Wang C, Cai H, Zhao H et al (2018) Distribution patterns for metabolites in medicinal parts of wild and cultivated licorice. J Pharm Biomed Anal 161:464–473. https://doi.org/10.1016/j.jpba.2018.09.004
[DOI:
10.1016/j.jpba.2018.09.004]
Wang C, Chen L, Cai Z et al (2020a) Comparative proteomic analysis reveals the molecular mechanisms underlying the accumulation difference of bioactive constituents in Glycyrrhiza uralensis fisch under salt stress. J Agric FOOD Chem 68:1480–1493. https://doi.org/10.1021/acs.jafc.9b04887
[DOI:
10.1021/acs.jafc.9b04887]
Wang H, Zhou Q, Mao P (2020b) Ultrastructural and photosynthetic responses of pod walls in alfalfa to drought stress. Int J Mol Sci 21:4457. https://doi.org/10.3390/ijms21124457
[DOI:
10.3390/ijms21124457]
Wang ZQ, Zhao QM, Zhong X et al (2020c) Comparative analysis of maca (Lepidium meyenii) proteome profiles reveals insights into response mechanisms of herbal plants to high-temperature stress. BMC Plant Biol 20:431. https://doi.org/10.1186/s12870-020-02645-4
[DOI:
10.1186/s12870-020-02645-4]
Wang M, Zhang Y, Zhu C et al (2021a) EkFLS overexpression promotes flavonoid accumulation and abiotic stress tolerance in plant. Physiol Plant 172:1966–1982. https://doi.org/10.1111/ppl.13407
[DOI:
10.1111/ppl.13407]
Wang Q, Jin Q, Ma Y et al (2021b) Iron toxicity-induced regulation of key secondary metabolic processes associated with the quality and resistance of Panax ginseng and Panax quinquefolius. Ecotoxicol Environ Saf 224:112648. https://doi.org/10.1016/j.ecoenv.2021.112648
[DOI:
10.1016/j.ecoenv.2021.112648]
Wang C, Wu D, Jiang L et al (2023a) Multi-omics elucidates difference in accumulation of bioactive constituents in licorice (Glycyrrhiza uralensis) under drought stress. Mol Basel Switz 28:7042. https://doi.org/10.3390/molecules28207042
[DOI:
10.3390/molecules28207042]
Wang S, Gu H, Chen S et al (2023b) Proteomics and phosphoproteomics reveal the different drought-responsive mechanisms of priming with (Z)-3-hexenyl acetate in two tea cultivars. J Proteomics 289:105010. https://doi.org/10.1016/j.jprot.2023.105010
[DOI:
10.1016/j.jprot.2023.105010]
Wang Y, Jiang W, Cheng J et al (2023c) Physiological and proteomic analysis of seed germination under salt stress in mulberry. Front Biosci Landmark Ed 28:49. https://doi.org/10.31083/j.fbl2803049
[DOI:
10.31083/j.fbl2803049]
Wang Z, Zhao T, Ma L et al (2023d) Mechanisms governing the impact of nitrogen stress on the formation of secondary metabolites in Artemisia argyi leaves. Sci Rep 13:12866. https://doi.org/10.1038/s41598-023-40098-5
[DOI:
10.1038/s41598-023-40098-5]
Wang Z, Wang P, Cao H et al (2024) Genome-wide identification of bZIP transcription factors and their expression analysis in Platycodon grandiflorus under abiotic stress. Front Plant Sci 15:1403220. https://doi.org/10.3389/fpls.2024.1403220
[DOI:
10.3389/fpls.2024.1403220]
Wellpott K, Jozefowicz AM, Meise P et al (2023) Combined nitrogen and drought stress leads to overlapping and unique proteomic responses in potato. Planta 257:58. https://doi.org/10.1007/s00425-023-04085-4
[DOI:
10.1007/s00425-023-04085-4]
Wu L, Meng X, Huang H et al (2022) Comparative proteome and phosphoproteome analyses reveal different molecular mechanism between stone planting under the forest and greenhouse planting of Dendrobium huoshanense. Front PLANT Sci 13:937392. https://doi.org/10.3389/fpls.2022.937392
[DOI:
10.3389/fpls.2022.937392]
Wu Y, Ma H, Ma S et al (2023) Physiological, proteomic and metabolomic analysis provide insights into Ca tolerance in Drynaria roosii leaves. Plant Stress 7:100132. https://doi.org/10.1016/j.stress.2023.100132
[DOI:
10.1016/j.stress.2023.100132]
Xiao S, Liu L, Zhang Y et al (2020) Tandem mass tag-based (TMT) quantitative proteomics analysis reveals the response of fine roots to drought stress in cotton (Gossypium hirsutum L.). BMC Plant Biol 20:328. https://doi.org/10.1186/s12870-020-02531-z
[DOI:
10.1186/s12870-020-02531-z]
Xie H, Yang D-H, Yao H et al (2016) iTRAQ-based quantitative proteomic analysis reveals proteomic changes in leaves of cultivated tobacco (Nicotiana tabacum) in response to drought stress. Biochem Biophys Res Commun 469:768–775. https://doi.org/10.1016/j.bbrc.2015.11.133
[DOI:
10.1016/j.bbrc.2015.11.133]
Xie H, Wang Y, Ding Y et al (2019) Global ubiquitome profiling revealed the roles of ubiquitinated proteins in metabolic pathways of tea leaves in responding to drought stress. Sci Rep 9:4286. https://doi.org/10.1038/s41598-019-41041-3
[DOI:
10.1038/s41598-019-41041-3]
Xu Q, Wang Y, Ding Z et al (2017) Aluminum induced physiological and proteomic responses in tea (Camellia sinensis) roots and leaves. Plant Physiol Biochem 115:141–151. https://doi.org/10.1016/j.plaphy.2017.03.017
[DOI:
10.1016/j.plaphy.2017.03.017]
Xu L, Hu Y, Jin G et al (2021) Physiological and proteomic responses to drought in leaves of Amygdalus mira (Koehne) Yu et Lu. Front Plant Sci 12:620499. https://doi.org/10.3389/fpls.2021.620499
[DOI:
10.3389/fpls.2021.620499]
Yamauchi Y, Kimura Y, Akimoto S et al (2011) Plants switch photosystem at high temperature to protect photosystem II. Nat Prec. https://doi.org/10.1038/npre.2011.6168.1
[DOI:
10.1038/npre.2011.6168.1]
Yan M, Xue C, Xiong Y et al (2020) Proteomic dissection of the similar and different responses of wheat to drought, salinity and submergence during seed germination. J Proteomics 220:103756. https://doi.org/10.1016/j.jprot.2020.103756
[DOI:
10.1016/j.jprot.2020.103756]
Yang B, Guan Q, Tian J, Komatsu S (2017) Transcriptomic and proteomic analyses of leaves from Clematis terniflora DC. under high level of ultraviolet-B irradiation followed by dark treatment. J Proteomics 150:323–340. https://doi.org/10.1016/j.jprot.2016.10.001
[DOI:
10.1016/j.jprot.2016.10.001]
Yang L, Wen K-S, Ruan X et al (2018) Response of plant secondary metabolites to environmental factors. Mol J Synth Chem Nat Prod Chem 23:762. https://doi.org/10.3390/molecules23040762
[DOI:
10.3390/molecules23040762]
Yang L, Zhao Y, Zhang Q et al (2019) Effects of drought-re-watering-drought on the photosynthesis physiology and secondary metabolite production of Bupleurum chinense DC. Plant Cell Rep 38:1181–1197. https://doi.org/10.1007/s00299-019-02436-8
[DOI:
10.1007/s00299-019-02436-8]
Yang L-L, Yang L, Yang X et al (2020) Drought stress induces biosynthesis of flavonoids in leaves and saikosaponins in roots of Bupleurum chinense DC. Phytochemistry 177:112434. https://doi.org/10.1016/j.phytochem.2020.112434
[DOI:
10.1016/j.phytochem.2020.112434]
Yang Y, Saand MA, Huang L et al (2021) Applications of multi-omics technologies for crop improvement. Front Plant Sci 12:563953. https://doi.org/10.3389/fpls.2021.563953
[DOI:
10.3389/fpls.2021.563953]
Yang Y, Lai W, Long L et al (2023) Comparative proteomic analysis identified proteins and the phenylpropanoid biosynthesis pathway involved in the response to ABA treatment in cotton fiber development. Sci Rep 13:1488. https://doi.org/10.1038/s41598-023-28084-3
[DOI:
10.1038/s41598-023-28084-3]
Yang Y, Cheng Y, Lu Z et al (2024) Comparative proteomic and metabolomic analyses reveal stress responses of hemp to salinity. Plant Cell Rep 43:154. https://doi.org/10.1007/s00299-024-03237-4
[DOI:
10.1007/s00299-024-03237-4]
Yao H, Wang F, Bi Q et al (2022) Combined analysis of pharmaceutical active ingredients and transcriptomes of Glycyrrhiza uralensis under PEG6000-induced drought stress revealed glycyrrhizic acid and flavonoids accumulation via JA-mediated signaling. Front Plant Sci 13:920172. https://doi.org/10.3389/fpls.2022.920172
[DOI:
10.3389/fpls.2022.920172]
Yeshi K, Crayn D, Ritmejeryte E, Wangchuk P (2022) Plant secondary metabolites produced in response to abiotic stresses has potential application in pharmaceutical product development. Molecules 27:313. https://doi.org/10.3390/molecules27010313
[DOI:
10.3390/molecules27010313]
Yin Z, Ren J, Zhou L et al (2016) Water deficit mechanisms in perennial shrubs Cerasus humilis leaves revealed by physiological and proteomic analyses. Proteome Sci 15:9. https://doi.org/10.1186/s12953-017-0117-1
[DOI:
10.1186/s12953-017-0117-1]
Yin X, Fan H, Chen Y et al (2020) Integrative omic and transgenic analyses reveal the positive effect of ultraviolet-B irradiation on salvianolic acid biosynthesis through upregulation of SmNAC1. Plant J 104:781–799. https://doi.org/10.1111/tpj.14952
[DOI:
10.1111/tpj.14952]
Yu H-Q, Zhou X-Y, Wang Y-G et al (2017) A betaine aldehyde dehydrogenase gene from Ammopiptanthus nanus enhances tolerance of Arabidopsis to high salt and drought stresses. Plant Growth Regul 83:265–276. https://doi.org/10.1007/s10725-016-0245-0
[DOI:
10.1007/s10725-016-0245-0]
Yu H, Li J, Chang X et al (2024) Genome-wide identification and expression profiling of the WRKY gene family reveals abiotic stress response mechanisms in Platycodon grandiflorus. Int J Biol Macromol 257:128617. https://doi.org/10.1016/j.ijbiomac.2023.128617
[DOI:
10.1016/j.ijbiomac.2023.128617]
Yuan Y, Liu Y, Wu C et al (2012) Water deficit affected flavonoid accumulation by regulating hormone metabolism in Scutellaria baicalensis georgi roots. PLoS ONE 7:e42946. https://doi.org/10.1371/journal.pone.0042946
[DOI:
10.1371/journal.pone.0042946]
Zaman S, Shen J, Wang S et al (2024) Effect of shading on physiological attributes and proteomic analysis of tea during low temperatures. Plants 13:63. https://doi.org/10.3390/plants13010063
[DOI:
10.3390/plants13010063]
Zhang X, Liu S, Takano T (2008) Overexpression of a mitochondrial ATP synthase small subunit gene (AtMtATP6) confers tolerance to several abiotic stresses in Saccharomyces cerevisiae and Arabidopsis thaliana. Biotechnol Lett 30:1289–1294. https://doi.org/10.1007/s10529-008-9685-6
[DOI:
10.1007/s10529-008-9685-6]
Zhang L, Zhu W, Zhang Y et al (2014) Proteomics analysis of Mahonia bealei leaves with induction of alkaloids via combinatorial peptide ligand libraries. J Proteomics 110:59–71. https://doi.org/10.1016/j.jprot.2014.07.036
[DOI:
10.1016/j.jprot.2014.07.036]
Zhang J, He L, Wu Y et al (2018a) Comparative proteomic analysis of Pogostemon cablin leaves after continuous cropping. Protein Expr Purif 152:13–22. https://doi.org/10.1016/j.pep.2018.07.004
[DOI:
10.1016/j.pep.2018.07.004]
Zhang L, Wu M, Teng Y et al (2018b) Overexpression of the glutathione peroxidase 5 (RcGPX5) gene from rhodiola crenulata increases drought tolerance in Salvia miltiorrhiza. Front Plant Sci 9:1950. https://doi.org/10.3389/fpls.2018.01950
[DOI:
10.3389/fpls.2018.01950]
Zhang Y, Zhao H, Zhou S et al (2018c) Expression of TaGF14b, a 14–3-3 adaptor protein gene from wheat, enhances drought and salt tolerance in transgenic tobacco. Planta 248:117–137. https://doi.org/10.1007/s00425-018-2887-9
[DOI:
10.1007/s00425-018-2887-9]
Zhang C, Yang D, Liang Z et al (2019a) Climatic factors control the geospatial distribution of active ingredients in Salvia miltiorrhiza Bunge in China. Sci Rep 9:904. https://doi.org/10.1038/s41598-018-36729-x
[DOI:
10.1038/s41598-018-36729-x]
Zhang Y, Zhang Y, Yu J et al (2019b) NaCl-responsive ROS scavenging and energy supply in alkaligrass callus revealed from proteomic analysis. BMC Genomics 20:990. https://doi.org/10.1186/s12864-019-6325-6
[DOI:
10.1186/s12864-019-6325-6]
Zhang H, Huo Y, Xu Z et al (2020) Physiological and proteomics responses of nitrogen assimilation and glutamine/glutamine family of amino acids metabolism in mulberry (Morus alba L.) leaves to NaCl and NaHCO stress. Plant Signal Behav 15:1798108. https://doi.org/10.1080/15592324.2020.1798108
[DOI:
10.1080/15592324.2020.1798108]
Zhang D, Liu T, Sheng J et al (2021a) TMT-based quantitative proteomic analysis reveals the physiological regulatory networks of embryo dehydration protection in lotus (Nelumbo nucifera). Front Plant Sci 12:792057. https://doi.org/10.3389/fpls.2021.792057
[DOI:
10.3389/fpls.2021.792057]
Zhang T, Gao Y, Han M, Yang L (2021b) Changes in the physiological characteristics of Panax ginseng embryogenic calli and molecular mechanism of ginsenoside biosynthesis under cold stress. Planta 253:79. https://doi.org/10.1007/s00425-020-03535-7
[DOI:
10.1007/s00425-020-03535-7]
Zhang D, Yang Z, Song X et al (2022a) TMT-based proteomic analysis of liquorice root in response to drought stress. BMC Genomics 23:524. https://doi.org/10.1186/s12864-022-08733-z
[DOI:
10.1186/s12864-022-08733-z]
Zhang G, Yu Z, Zhang L et al (2022b) Physiological and proteomic analyses reveal the effects of exogenous nitrogen in diminishing Cd detoxification in Acacia auriculiformis. Ecotoxicol Environ Saf 229:113057. https://doi.org/10.1016/j.ecoenv.2021.113057
[DOI:
10.1016/j.ecoenv.2021.113057]
Zhang H, Zhu J, Gong Z, Zhu J-K (2022c) Abiotic stress responses in plants. Nat Rev Genet 23:104–119. https://doi.org/10.1038/s41576-021-00413-0
[DOI:
10.1038/s41576-021-00413-0]
Zhang K, Ebihara A, Tong S et al (2023a) Bidens pilosa root exudates modulate Pteris multifida gametophyte development: a proteomic investigation. Ind Crops Prod 205:117499. https://doi.org/10.1016/j.indcrop.2023.117499
[DOI:
10.1016/j.indcrop.2023.117499]
Zhang Q, Li Y, Sun L et al (2023b) Integration of transcriptomic and proteomic analyses of Rhododendron chrysanthum Pall. in response to cold stress in the Changbai Mountains. Mol Biol Rep 50:3607–3616. https://doi.org/10.1007/s11033-022-08114-5
[DOI:
10.1007/s11033-022-08114-5]
Zhang T, Li Y, Wang P et al (2023c) Characterization of Dendrobium catenatum CBL-CIPK signaling networks and their response to abiotic stress. Int J Biol Macromol 236:124010. https://doi.org/10.1016/j.ijbiomac.2023.124010
[DOI:
10.1016/j.ijbiomac.2023.124010]
Zhang X-J, Wu C, Liu B-Y et al (2023d) Transcriptomic and metabolomic profiling reveals the drought tolerance mechanism of Illicium difengpi (Schisandraceae). Front Plant Sci 14:1284135. https://doi.org/10.3389/fpls.2023.1284135
[DOI:
10.3389/fpls.2023.1284135]
Zhang Y, Xu J, Li R et al (2023e) Plants’ response to abiotic stress: mechanisms and strategies. Int J Mol Sci 24:10915. https://doi.org/10.3390/ijms241310915
[DOI:
10.3390/ijms241310915]
Zhang S, Qi X, Zhu R et al (2024) Transcriptome analysis of Salvia miltiorrhiza under drought stress. Plants Basel Switz 13:161. https://doi.org/10.3390/plants13020161
[DOI:
10.3390/plants13020161]
Zheng W, Li X, Zhang L et al (2015) Improved metabolites of pharmaceutical ingredient grade Ginkgo biloba and the correlated proteomics analysis. Proteomics 15:1868–1883. https://doi.org/10.1002/pmic.201400258
[DOI:
10.1002/pmic.201400258]
Zheng W, Komatsu S, Zhu W et al (2016) Response and defense mechanisms of Taxus chinensis leaves under UV-A radiation are revealed using comparative proteomics and metabolomics analyses. Plant Cell Physiol 57:1839–1853. https://doi.org/10.1093/pcp/pcw106
[DOI:
10.1093/pcp/pcw106]
Zheng H, Fu X, Shao J et al (2023) Transcriptional regulatory network of high-value active ingredients in medicinal plants. Trends Plant Sci 28:429–446. https://doi.org/10.1016/j.tplants.2022.12.007
[DOI:
10.1016/j.tplants.2022.12.007]
Zhong Z, Liu S, Zhu W et al (2019) Phosphoproteomics reveals the biosynthesis of secondary metabolites in Catharanthus roseus under ultraviolet-B radiation. J Proteome Res 18:3328–3341. https://doi.org/10.1021/acs.jproteome.9b00267
[DOI:
10.1021/acs.jproteome.9b00267]
Zhong Z, Liu S, Han S et al (2021) Integrative omic analysis reveals the improvement of alkaloid accumulation by ultraviolet-B radiation and its upstream regulation in Catharanthus roseus. Ind Crops Prod 166:113448. https://doi.org/10.1016/j.indcrop.2021.113448
[DOI:
10.1016/j.indcrop.2021.113448]
Zhou X, Chen S, Wu H et al (2017) Biochemical and proteomics analyses of antioxidant enzymes reveal the potential stress tolerance in Rhododendron chrysanthum Pall. Biol Direct 12:10. https://doi.org/10.1186/s13062-017-0181-6
[DOI:
10.1186/s13062-017-0181-6]
Zhou Y, Yao L, Huang X et al (2023) Transcriptomics and metabolomics association analysis revealed the responses of Gynostemma pentaphyllum to cadmium. Front Plant Sci 14:1265971. https://doi.org/10.3389/fpls.2023.1265971
[DOI:
10.3389/fpls.2023.1265971]
Zhu W, Yang B, Komatsu S et al (2015) Binary stress induces an increase in indole alkaloid biosynthesis in Catharanthus roseus. Front Plant Sci 6:582. https://doi.org/10.3389/fpls.2015.00582
[DOI:
10.3389/fpls.2015.00582]
Zhu X, Liao J, Xia X et al (2019) Physiological and iTRAQ-based proteomic analyses reveal the function of exogenous γ-aminobutyric acid (GABA) in improving tea plant (Camellia sinensis L.) tolerance at cold temperature. BMC Plant Biol 19:43. https://doi.org/10.1186/s12870-019-1646-9
[DOI:
10.1186/s12870-019-1646-9]
Zhu W, Han H, Liu A et al (2021) Combined ultraviolet and darkness regulation of medicinal metabolites in Mahonia bealei revealed by proteomics and metabolomics. J Proteomics 233:104081. https://doi.org/10.1016/j.jprot.2020.104081
[DOI:
10.1016/j.jprot.2020.104081]
Zhu Y, Qiu W, He X et al (2022a) Integrative analysis of transcriptome and proteome provides insights into adaptation to cadmium stress in Sedum plumbizincicola. Ecotoxicol Environ Saf 230:113149. https://doi.org/10.1016/j.ecoenv.2021.113149
[DOI:
10.1016/j.ecoenv.2021.113149]
Zhu Y, Qiu W, Li Y et al (2022b) Quantitative proteome analysis reveals changes of membrane transport proteins in Sedum plumbizincicola under cadmium stress. Chemosphere 287:132302. https://doi.org/10.1016/j.chemosphere.2021.132302
[DOI:
10.1016/j.chemosphere.2021.132302]