Bedrettin Selvi, Güler Durmuş, Mustafa Ceylan, Şuheda Yıldırım, Ümit M Koçyiğit, Ümit Yırtıcı, Volkan Eyüpoğlu
N. Chaachouay, A. Azeroual, M. K. A. Ansari, and L. Zidane, “Use of Plants as Medicines and Aromatics by Indigenous Communities of Morocco: Pharmacognosy, Ecology and Conservation,” in Plants as Medicine and Aromatics, (CRC Press, 2023), 33–44.
M. K. A. Ansari, M. Iqbal, N. Chaachouay, A. A. Ansari, and G. Owens, “The Concept and Status of Medicinal and Aromatic Plants: History, Pharmacognosy, Ecology, and Conservation,” in Plants as Medicine and Aromatics, (CRC Press, 2023), 129–144.
D. D. Umashankar, “Plant Secondary Metabolites as Regenerative Medicine,” Journal of Phytopharmacology 9 (2020): 270–273.
P. Kongdang, N. Dukaew, D. Pruksakorn, and N. Koonrungsesomboon, “Biochemistry of Amaranthus Polyphenols and Their Potential Benefits on Gut Ecosystem: A Comprehensive Review of the Literature,” Journal of Ethnopharmacology 281 (2021): 114547.
U. Sarker, M. G. Rabbani, S. Oba, et al., “Phytonutrients, Colorant Pigments, Phytochemicals, and Antioxidant Potential of Orphan Leafy Amaranthus Species,” Molecules (Basel, Switzerland) 27 (2022): 2899.
A. Spórna‐Kucab, A. Tekieli, A. Kisiel, et al., “Antioxidant and Antimicrobial Effects of Baby Leaves of Amaranthus tricolor L. Harvested as Vegetable in Correlation With Their Phytochemical Composition,” Molecules (Basel, Switzerland) 28 (2023): 1463.
Y. C. Yang, M. C. Mong, W. T. Wu, Z. H. Wang, and M. C. Yin, “Phytochemical Profiles and Anti‐Diabetic Benefits of Two Edible Amaranthus Species,” CyTA‐Journal of Food 18 (2020): 94–101.
I. Cortés, F. Ceric, H. Navarrete, M. Rodríguez‐Díaz, and M. C. Otero, “Andean Medicinal Plants and Their Secondary Metabolites: Connections Between Aymara Traditional Medicine and Modern Pharmacology,” Biochemical and Biophysical Research Communications 750 (2025): 151328.
S. Hamidzadeh Moghadam, M. T. Alebrahim, A. Tobeh, et al., “Redroot Pigweed (Amaranthus retroflexus L.) and Lamb's Quarters (Chenopodium album L.) Populations Exhibit a High Degree of Morphological and Biochemical Diversity,” Frontiers in Plant Science 12 (2021): 593037.
S. Weller, S. Florentine, M. M. Javaid, et al., “Amaranthus retroflexus L. (Redroot Pigweed): Effects of Elevated CO2 and Soil Moisture on Growth and Biomass and the Effect of Radiant Heat on Seed Germination,” Agronomy 11 (2021): 728.
P. Lu, Y. Pang, H.‐J. Wang, et al., “Asymmetric Effects of Planting Pattern and Density on Leaf‐Height Traits of Glycine Max and Amaranthus retroflexus,” Journal of Plant Ecology 17 (2024): rtae101.
M. C. Ogwu, Nutritional Value of Amaranth (IntechOpen, 2020).
C. W. Wrigley, H. Corke, K. Seetharaman, and J. Faubion, eds., Encyclopedia of Food Grains (Academic Press, 2015).
B. S. A. Kumar, “Amaranthus retroflexus: A Dual‐Edged Plant With Promising Therapeutic Potential and Toxicological Concerns: A Review,” Journal of Medical and Allied Sciences 13 (2024): 6916–6920.
A. Jamiołkowska, B. Skwaryło‐Bednarz, R. Kowalski, I. Yildirim, and E. Patkowska, “Antifungal Potency of Amaranth Leaf Extract: An In Vitro Study,” Plants 12 (2023): 1723.
T. Manso, M. Lores, and T. de Miguel, “Antimicrobial Activity of Polyphenols and Natural Polyphenolic Extracts on Clinical Isolates,” Antibiotics 11 (2021): 46.
S. M. Pal, G. Bharat, K. Rakesh, and R. Sandeep, “Phytochemical and Pharmacological Aspects of Genus Amaranthus,” Fitoterapia 176 (2024): 106036.
M. Noori, M. Talebi, and Z. Nasiri, “Seven Amaranthus L. (Amaranthaceae) Taxa Flavonoid Compounds From Tehran Province‐Iran,” International Journal of Modern Botany 5 (2015): 9–17.
A. P. Sărăcin, A. Biță, I. A. Sărăcin, et al., “Determination by UHPLC—UV—MS of Polyphenol Content of Amaranthus retroflexus,” Notulae Botanicae Horti Agrobotanici 51 (2023): 13102.
S. Fiorito, F. Epifano, R. Palmisano, S. Genovese, and V. A. Taddeo, “A Re‐Investigation of the Phytochemical Composition of the Edible Herb Amaranthus retroflexus L,” Journal of Pharmaceutical and Biomedical Analysis 143 (2017): 183–187.
P. A. Weston, S. Gurusinghe, E. Birckhead, D. Skoneczny, J. C. Quinn, and L. A. Weston, “Chemometric Analysis of Amaranthus retroflexus in Relation to Livestock Toxicity in Southern Australia,” Phytochemistry 161 (2019): 1–10.
O. Erel, “A Novel Automated Method to Measure Total Antioxidant Response Against Potent Free Radical Reactions,” Clinical Biochemistry 37 (2004): 112–119.
O. Erel, “A New Automated Colorimetric Method for Measuring Total Oxidant Status,” Clinical Biochemistry 38 (2005): 1103–1111.
A. Aycicek and O. Erel, “Estado Oxidante/Antioxidante Total em Recém‐Nascidos Ictéricos Antes e Depois da Fototerapia,” Jornal de Pediatria 83 (2007): 319–322.
B. Selvi and M. Demir, “Polyphenol Contents and Antioxidant, Antibacterial, and DNA Protective Effects of Iris Orientalis,” Chemistry of Natural Compounds 57 (2021): 367–370.
B. Selvi and N. K. Zanbak, “Elucidating the Biological Potential and DNA Protective Activities of Astragalus tokatensis Fisch: GC‐MS and LC‐HRMS‐Based Characterization and Molecular Docking Studies,” Chemistry & Biodiversity (2025): e202403236.
J.‐H. Bang, I.‐H. Jo, R. Sebastin, et al., “Comparative Analysis of Polyphenolic Compounds in Different Amaranthus Species: Influence of Genotypes and Harvesting Year,” Antioxidants 13, no. 4 (2024): 501.
J. Kozłowska and A. Duda‐Madej, Antimicrobial Activity of Different Plant Extracts, Plant‐Derived Compounds and Synthetic Derivatives of Natural Compounds on Pathogenic Microorganisms (MDPI‐Multidisciplinary Digital Publishing Institute, 2024).
L. Guo, Y. Wang, X. Bi, et al., “Antimicrobial Activity and Mechanism of Action of the Amaranthus Tricolor Crude Extract Against Staphylococcus aureus and Potential Application in Cooked Meat,” Foods 9, no. 3 (2020): 359.
Ö. T. Yayintaş and N. Demir, “Determination of Antioxidant Activity and DNA Damage Protection of Marchantia polymorpha L,” Fresenius Environment Bulletin 30 (2021): 3420–3425.
G. Marucci, M. Buccioni, D. D. Ben, C. Lambertucci, R. Volpini, and F. Amenta, “Efficacy of Acetylcholinesterase Inhibitors in Alzheimer's Disease,” Neuropharmacology 190 (2021): 108352.
N. Cichon, W. Grabowska, L. Gorniak, et al., “Mechanistic and Therapeutic Insights Into Flavonoid‐Based Inhibition of Acetylcholinesterase: Implications for Neurodegenerative Diseases,” Nutrients 17, no. 1 (2024): 78.
M. Magdy, A. H. Elosaily, E. Mohsen, and H. M. El Hefnawy, “Chemical Profile, Antioxidant and Anti‐Alzheimer Activity of Leaves and Flowers of Markhamia lutea Cultivated in Egypt: In Vitro and In Silico Studies,” Future Journal of Pharmaceutical Sciences 10, no. 1 (2024): 103.
A. P. Murray, M. B. Faraoni, M. J. Castro, N. P. Alza, and V. Cavallaro, “Natural AChE Inhibitors From Plants and Their Contribution to Alzheimer's Disease Therapy,” Current Neuropharmacology 11, no. 4 (2013): 388–413.
G. Xiong, Z. Wu, J. Yi, et al., “ADMETlab 2.0: An Integrated Online Platform for Accurate and Comprehensive Predictions of ADMET Properties,” Nucleic Acids Research 49, no. W1 (2021): W5–W14.
G. Ö. A. Toroman, S. Atasoy, H. Şenol, E. Şükran Okudan, H. Öykü Dinç, and G. Topçu, “LC–MS and GC‐MS Analyses on Green Algae Penicillus capitatus: Cytotoxic, Antimicrobial and Anticholinesterase Activity Screening Enhanced by Molecular Docking & Dynamics and ADME Studies,” Chemistry and Biodiversity 21 (2024): e202400915.
Ö. Seçmen, Y. Gemici, G. Görk, L. Bekat, and E. Leblebici, Tohumlu Bitkiler Sistematiği, Fen Fakültesi Kitaplar Serisi No: 116 (Ege Üniversitesi Yayınları, 2018).
L. Knierim, A. Uhl, A. Schmidt, et al., “Pressurized Hot Water Extraction as Green Technology for Natural Products as Key Technology With Regard to Hydrodistillation and Solid–Liquid Extraction,” ACS Omega 9, no. 29 (2024): 31998–32010.
H. Kiziltas, Z. Bingol, A. C. Goren, et al., “Comprehensive Metabolic Profiling of Acantholimon caryophyllaceum Using LC–HRMS and Evaluation of Antioxidant Activities, Enzyme Inhibition Properties and Molecular Docking Studies,” South African Journal of Botany 151 (2022): 743–755.
A. Khan, A. S. Jadon, and P. Bhadauriya, “Evaluation of Extractive Value and In‐Vitro Antimicrobial Potential of Curcuma Longa Using Disk Diffusion Method,” Journal of Drug Delivery and Therapeutics 12, no. 6‐s (2022): 30–35.
E. Latıfıan, C. Otur, B. Abanoz‐Secgin, S. F. Arslanoglu, and A. Kurt‐Kızıldogan, “Evaluation of Antimicrobial Activity in Extracts of Different Parts of Three Tagetes Species,” Turkish Journal of Field Crops 26, no. 1 (2021): 117–122.
M. R. Efendi, M. S. Rusdi, and F. Anisa, “Isolation and Antibacterial Activity Test of the Extract Ethyl Acetate of Endophytic Fungi From Kencur (Kaempferia galanga L.),” Journal of Pharmaceutical Sciences 3, no. 2 (2020): 85–92.
A. Russo, R. Acquaviva, A. Campisi, et al., “Bioflavonoids as Antiradicals, Antioxidants and DNA Cleavage Protectors,” Cell Biology and Toxicology 16 (2000): 91–98.
O. Osmaniye and B. K. Çavuşoğlu, “Potansiyel Antikolinesteraz Ajanlar Olarak Yeni İmidazol Türevlerinin Sentezi Ve Karakterizasyonu,” Süleyman Demirel University Faculty of Arts and Science 16, no. 1 (2021): 301–307.
J. Cheung, M. J. Rudolph, F. Burshteyn, et al., “Structures of Human Acetylcholinesterase in Complex With Pharmacologically Important Ligands,” Journal of Medicinal Chemistry 55, no. 22 (2012): 10282–10286.
H. Bekker, H. J. C. Berendsen, E. J. Dijkstra, et al., “Gromacs: A Parallel Computer for Molecular Dynamics Simulations,” in Physics Computing 92, ed. R. A. de Groot and J. Nadrchal (World Scientific, 1993), 252–256.
W. Humphrey, A. Dalke, and K. Schulten, “VMD: Visual Molecular Dynamics,” Journal of Molecular Graphics 14 (1996): 33–38.
R. Rawat, K. Kant, A. Kumar, K. Bhati, and S. M. Verma, “HeroMDAnalysis: An Automagical Tool for GROMACS‐Based Molecular Dynamics Simulation Analysis,” Future Medicinal Chemistry 13, no. 5 (2021): 447–456.