Zooplankton biodiversity assessment and community structure in semi-arid reservoirs of Northwestern Algeria.

Lidia Baitiche, Safia Akli-Bidi, Manuel E Muñoz-Colmenares, Mohammed Mebarki, Juan M Soria
Author Information
  1. Lidia Baitiche: Marine Bioresources Laboratory, Faculty of Sciences, Badji Mokhtar University of Annaba UBMA, B.P.12, 23000, Annaba, Algeria. baitiche.lid@gmail.com. ORCID
  2. Safia Akli-Bidi: Laboratory of Dynamics and Biodiversity (LADYBIO), FSB, University of Science and Technology Houari Boumediene USTHB, LP 32 El-Alia, Bab Ezzouar, Algiers, Algeria.
  3. Manuel E Muñoz-Colmenares: Cavanilles Institute of Biodiversity and Evolutionary Biology (ICBiBE), Universitat de València, 46980, Paterna, València, Spain. ORCID
  4. Mohammed Mebarki: Laboratory of Dynamics and Biodiversity (LADYBIO), FSB, University of Science and Technology Houari Boumediene USTHB, LP 32 El-Alia, Bab Ezzouar, Algiers, Algeria.
  5. Juan M Soria: Cavanilles Institute of Biodiversity and Evolutionary Biology (ICBiBE), Universitat de València, 46980, Paterna, València, Spain. ORCID

Abstract

Zooplankton communities are essential indicators of aquatic ecosystem health. Understanding their reactions to varying environmental conditions can provide valuable insights into freshwater ecosystems management. This study aims to compare the influence of environmental drivers on zooplankton biodiversity and community structure in two interconnected reservoirs with distinct morphometric and environmental characteristics in Northwestern Algeria: Cheliff, a shallow diversion reservoir supplies Kerrada, a deep storage reservoir. These reservoirs are integral to a large-scale project transferring dam water to provide drinking water for Mostaganem, Arzew, and Oran (M.A.O.) corridor. Monthly sampling over a two-year period (from November 2020 to October 2022) was conducted in these two reservoirs. We assessed the composition, abundance, and diversity of the main zooplankton groups: Rotifera, Copepoda, and Cladocera, to determine their adaptive responses to environmental conditions. Our findings indicate that morphometric, physical, and chemical differences between these reservoirs significantly impact zooplankton dynamics. Cheliff exhibited higher temperatures, alkalinity, salinity, and nutrient concentrations, attributed to its shallow depth (mean depth = 6 m) and anthropogenic pressures. In contrast, Kerrada's greater depth (mean depth = 115 m) contributed to more stable water quality, lower turbidity, and prolonged nutrient retention. Zooplankton diversity patterns highlighted the influence of environmental variables. Cheliff reservoir supported higher species richness (28 species) compared to Kerrada reservoir (20 species), although both reservoirs showed similar Shannon diversity index (H') values. Cheliff's zooplankton community was dominated by opportunistic rotifers such as Keratella valga and Synchaeta pectinata, associated with eutrophic conditions and high turbidity. Conversely, Kerrada exhibited higher species evenness and dominance of cladocerans such as Diaphanosoma brachyurum, indicative of moderate-quality, oxygen-rich waters. Statistical analyses, including redundancy analysis (RDA), revealed strong correlations between environmental factors and zooplankton diversity, particularly microcrustaceans such as copepods and cladocerans. Cheliff was characterized by the high abundance of cyclopoida Acanthocyclops americanus and a lower abundance of cladocerans, while Kerrada was dominated by calanoida Copidodiaptomus numidicus and showed a higher abundance of cladocerans. Key environmental drivers shaping the distribution and abundance of zooplankton groups included temperature, turbidity, salinity, organic matter, and nutrient levels (notably orthophosphates and ammonium) in Cheliff reservoir, while dissolved oxygen, and lower nutrient concentrations played a pivotal role in structuring communities in Kerrada. These results indicate that nutrient availability, water depth, and habitat stability critically shape zooplankton community structure in these semi-arid reservoirs. This study provides new insights into the use of zooplankton as bioindicators, with significant implications for water quality assessment and ecological conservation strategies in similar Mediterranean ecosystems.

Keywords

References

Afonina, E. Y., & Tashlykova, N. A. (2018). Plankton community and the relationship with the environment in saline lakes of Onon-Torey plain, Northeastern Mongolia. Saudi Journal of Biological Sciences, 25(2), 399–408. https://doi.org/10.1016/j.sjbs.2017.01.003
Akli, S. (1992). Systématique et répartition géographique des copépodes (Crustacés dulcicoles) dans le nord de l’Algérie. [Thèse de Magister]. Université des Sciences et de la Technologie Houari Boumediene.
Akli-Bidi, S., Meraghni, F., Seddaoui, L., Nasrouche, I., & Baitiche, L. (2023). Impact des changements environnementaux sur le zooplancton du barrage de Boukerdane (Tipaza-Algérie). Bulletin de la Société Zoologique de France, 148(1). https://societe-zoologique.fr/sites/default/files/revue/2023-04/ZOO148%281%29AkliBidi2_cor.pdf
Alayat, H., El Khattabi, J., & Lamouroux, C. (2013). Spatial evolution of the physico-chemical characteristics of the waters of Lake Oubeira imposed by the severe conditions of drought (extreme NE Algeria). European Scientific Journal, ESJ, 9(36), 564–579. https://doi.org/10.15373/2249555X/DEC2013/5
Alekseev, V. R. (2021). Confusing invader: Acanthocyclops americanus (Copepoda: Cyclopoida) and its biological, anthropogenic and climate-dependent mechanisms of rapid distribution in Eurasia. Water, 13(10), 1423. https://doi.org/10.3390/w13101423
Alekseev, V. R., Miracle, M. R., Sahuquillo, M., & Vicente, E. (2021). Redescription of Acanthocyclops vernalis (Fischer, 1853) and Acanthocyclops robustus (Sars, 1863) from neotypes, with special reference to their distinction from Acanthocyclops americanus (Marsh, 1892) and its invasion of Eurasia. Limnetica, 40(1), 57–78. https://doi.org/10.23818/limn.40.05
Algerian National Meteorological Office. (2022). Annual meteorological data report: 2020–2022. ONM. https://www.meteo.dz/
Allan, J. D., spsampsps Castillo, M. M. (2007). Stream ecology: Structure and function of running waters (2nd ed.). Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978-1-4020-5583-6
Almeida, R., Sousa Pinto, I., & Antunes, S. C. (2020). Contribution of zooplankton as a biological element in the assessment of reservoir water quality. Limnetica, 39(1), 245–261. https://doi.org/10.23818/limn.39.16
Alonso, M. (1996). Crustacea, Branchiopoda. In Serie Fauna Ibérica (CSIC, Vol. 7). Museo Nacional De Ciencias Naturales, Madrid, Spain.
Amar, M. E. B., Amar, S. B., & Amar, Y. (2023). Comparative study of zooplankton dynamics (Cladocerans and Rotifers) in relation to abiotic parameters in Sidi Mhamed Benali Lake and Sarno Dam (Western Algeria). Egyptian Journal of Aquatic Biology & Fisheries, 27(6). https://doi.org/10.21608/ejabf.2023.329200
APHA (American Public Health Association). (2017). Standard Methods for the Examination of Water and Wastewater (23rd ed.). Method 2540 D: Total Suspended Solids Dried at 103–105 °C. Washington, DC: APHA/AWWA/WEF.
Armengol, X., & Miracle, M. R. (1999). Zooplankton communities in doline lakes and pools, in relation to some bathymetric parameters and physical and chemical variables. Journal of Plankton Research, 21(12), 2245–2261. https://doi.org/10.1093/plankt/21.12.2245
Bakhtiyar, Y., Arafat, M. Y., Andrabi, S., spsampsps Tak, H. I. (2020). Zooplankton: The significant ecosystem service provider in aquatic environment. In Bioremediation and Biotechnology, Vol 3 (pp. 227–244). Springer International Publishing. https://doi.org/10.1007/978-3-030-46075-4_10
Bellinger, E., & Sigee, D. (2010). Freshwater algae: Identification and use as bioindicators. Wiley-Blackwell, 187–238. https://doi.org/10.1002/9780470689554
Bidi-Akli, S., Arab, A., & Samraoui, B. (2014). Variation spatio-temporelle du zooplancton dans le barrage de la réserve de chasse de Zéralda (Algérie). Revue D’écologie (La Terre Et La Vie), 69(3–4), 214–224. https://doi.org/10.3406/revec.2014.1746
Błędzki, L. A., spsampsps Rybak, J. I. (2016). Freshwater crustacean zooplankton of Europe: Cladocera spsampsps Copepoda (Calanoida, Cyclopoida) key to species identification, with notes on ecology, distribution, methods and introduction to data analysis. Springer International Publishing XV, 918. https://doi.org/10.1007/978-3-319-29871-9
Bonecker, C. C., Diniz, L. P., Braghin, L. D. S. M., Mantovano, T., da Silva, J. V. F., de Fátima Bomfim, F., ... & Lansac-Tôha, F. A. (2020). Synergistic effects of natural and anthropogenic impacts on zooplankton diversity in a subtropical floodplain: A long-term study. Oecologia Australis, 24(2), 524–537. https://doi.org/10.4257/oeco.2020.2402.20
Bouzidi, M. A., Amar, Y., Attaoui, I., Latrèche, A., Benyahia, M., Bouguenaya, N., & Meliani, H. (2010). Copépodes, Cladocères et Rotifères du lac Sidi M’hamed Benali (Algérie Nord-Occidentale). Physio-Géo, 4, 69–85. https://doi.org/10.4000/physio-geo.1128
Bowersox, B. J., Scarnecchia, D. L., & Miller, S. E. (2014). Distribution, abundance, and vertical migrations of Leptodora kindtii in a mainstem Missouri River reservoir, Montana, USA. Journal of Freshwater Ecology, 29(2), 171–186. https://doi.org/10.1080/02705060.2013.844736
Boyd, C. E. (2020). Solar radiation and water temperature. In Water Quality (pp. 21–39). Springer International Publishing. https://doi.org/10.1007/978-3-030-23335-8_2
Cabral, C. R., Guariento, R. D., Ferreira, F. C., Amado, A. M., Nobre, R. L. G., Carneiro, L. S., & Caliman, A. (2019). Are the patterns of zooplankton community structure different between lakes and reservoirs? A local and regional assessment across tropical ecosystems. Aquatic Ecology, 53(3), 335–346. https://doi.org/10.1007/s10452-019-09693-5
Cabral, C. R., Diniz, L. P., da Silva, A. J., Fonseca, G., Carneiro, L. S., de Melo Júnior, M., & Caliman, A. (2020). Zooplankton species distribution, richness and composition across tropical shallow lakes: A large scale assessment by biome, lake origin, and lake habitat. In Annales de Limnologie-International Journal of Limnology (Vol. 56, p. 25). EDP Sciences. https://doi.org/10.1051/limn/2020023
Carpenter, S. R., Kitchell, J. F., & Hodgson, J. R. (1985). Cascading trophic interactions and lake productivity. BioScience, 35(10), 634–639. https://doi.org/10.2307/1309989
Cherbi, M., Lek-Ang, S., Lek, S., & Arab, A. (2008). Distribution du zooplancton dans les lacs à climat méditerranéen. Comptes Rendus. Biologies, 331(9), 692–702. https://doi.org/10.1016/j.crvi.2008.06.003
Das, R., Samal, N. R., Roy, P. K., & Mitra, D. (2006). Role of electrical conductivity as an indicator of pollution in shallow lakes. Asian Journal of Water, Environment and Pollution, 3(1), 143–146. https://doi.org/10.3233/AJW-2006-3_1_21
Derdous, O., Tachi, S. E., & Bouguerra, H. (2021). Spatial distribution and evaluation of aridity indices in Northern Algeria. Arid Land Research and Management, 35(1), 1–14. https://doi.org/10.1080/15324982.2020.1796841
Dodson, S. I., Newman, A. L., Will-Wolf, S., Alexander, M. L., Woodford, M. P., & Van Egeren, S. (2008). The relationship between zooplankton community structure and lake characteristics in temperate lakes (Northern Wisconsin, USA). Journal of Plankton Research, 31(1), 93–100. https://doi.org/10.1093/plankt/fbn095
Dojlido, J., & Best, G. A. (1993). Chemistry of water and water pollution. Ellis Horwood.
Dussart, B. & Defaye, D. (2002). World Directory of Crustacea Copepoda of Inland Waters, (Vol. 2). Backhuys Publishers, Leiden.
Dussart, B., & Defaye, D. (2006). World directory of Crustacea Copepoda of inland waters, (Vol. 2). Backhuys Publishers, Leiden.
Dussart, B. (1967). Les copépodes des eaux continentales d’Europe occidentale. I. Calanoïdes et Harpacticoïdes, (Vol. 1). Boubée et Cie, Paris.
Dussart, B. (1989). Crustacés copépodes calanoïdes des eaux intérieures africaines. Crustaceana. Supplement, (15), III-205.
Ejsmont-Karabin, J. (1995). Rotifer occurrence in relation to age, depth and trophic state of quarry lakes. Hydrobiologia, 313–314(1), 21–28. https://doi.org/10.1007/BF00025927
Emberger, L. (1955). Une classification biogéographique des climats. Rev. Trav. Fac. Sci. Univ. Montpellier, Ser. Bot., 18(1–6), 368–373. https://doi.org/10.1007/BF00332849
Enawgaw, Y., Wagaw, S., Wosnie, A., & Tessema, K. (2023). Zooplankton as ecosystem indicators and their effects on eutrophication in Lake Arekit (Ethiopia) – Implication for freshwater habitat management. Journal of Freshwater Ecology, 38(1). https://doi.org/10.1080/02705060.2023.2287433
García-Chicote, J., Armengol, X., & Rojo, C. (2018). Zooplankton abundance: A neglected key element in the evaluation of reservoir water quality. Limnologica, 69, 46–54. https://doi.org/10.1016/j.limno.2017.11.004
García-Chicote, J., Armengol, X., & Rojo, C. (2019). Zooplankton species as indicators of trophic state in reservoirs from Mediterranean river basins. Inland Waters, 9(1), 113–123. https://doi.org/10.1080/20442041.2018.1519352
Golterman, K. L., Clymo, R. S., & Ohmstad, M. A. M. (1978). Methods for physical and chemical analysis of freshwater (2nd ed.). Scientific Publications.
Guermazi, W., El-khateeb, M., Abu-Dalo, M., Sallemi, I., Al-Rahahleh, B., Rekik, A., Belmonte, G., Ayadi, H., & Annabi-Trabelsi, N. (2023). Assessment of the zooplankton community and water quality in an artificial freshwater lake from a semi-arid area (Irbid, Jordan). Water, 15(15), 2796. https://doi.org/10.3390/w15152796
Güher, H. (2022). Spatial and temporal changes of planktonic microcrustaceans (Cladocera, Copepoda) and their relationship with physicochemical parameters in Kırklareli Reservoir (Kırklareli-Türkiye). Journal of Limnology and Freshwater Fisheries Research, 8(3), 269–281. https://doi.org/10.17216/limnofish.1057805
Hamil, S., Bouchelouche, D., Arab, S., Alili, M., Baha, M., & Arab, A. (2021). The relationship between zooplankton community and environmental factors of Ghrib Dam in Algeria. Environmental Science and Pollution Research, 28(34), 46592–46602. https://doi.org/10.1007/S11356-020-10844-7
Hammer, Ø., Harper, D. A., & Ryan, P. D. (2001). Past: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9.
Hansen, H. P., & Koroleff, F. (1999). Determination of nutrients. In Methods of seawater analysis (pp. 159–228). Wiley. https://doi.org/10.1002/9783527613984.ch10
Hessen, D. O., Faafeng, B. A., Smith, V. H., Bakkestuen, V., & Walseng, B. (2006). Extrinsic and intrinsic controls of zooplankton diversity in lakes. Ecology, 87(2), 433–443. https://doi.org/10.1890/05-0352
Hoffmann, M. D., & Dodson, S. I. (2005). Land use, primary productivity, and lake area as descriptors of zooplankton diversity. Ecology, 86(1), 255–261. https://doi.org/10.1890/03-0833
Hooda, V., Gupta, S., Singh Chundawat, T., & Singh Lather, A. (2024). From nutrient to nuisance: the impact of phosphorus on aquatic ecosystem health. In Futuristic Trends in Chemical Material Sciences & Nano Technology Volume 3 Book 24 (pp. 177–211). Iterative International Publishers, Selfypage Developers Pvt Ltd. https://doi.org/10.58532/V3BECS24P3CH5
Jane, S. F., Mincer, J. L., Lau, M. P., Lewis, A. S., Stetler, J. T., & Rose, K. C. (2023). Longer duration of seasonal stratification contributes to widespread increases in Lake Hypoxia and anoxia. Global Change Biology, 29(4), 1009–1023. https://doi.org/10.1111/gcb.16525
Jeppesen, E., Nõges, P., Davidson, T. A., Haberman, J., Nõges, T., Blank, K., Lauridsen, T. L., Søndergaard, M., Sayer, C., Laugaste, R., Johansson, L. S., Bjerring, R., & Amsinck, S. L. (2011). Zooplankton as indicators in lakes: A scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia, 676(1), 279–297. https://doi.org/10.1007/s10750-011-0831-0
Kehayias, G., Chalkia, E., Chalkia, S., Nistikakis, G., Zacharias, I., & Zotos, A. (2008). Zooplankton dynamics in the upstream part of Stratos reservoir (Greece). Biologia, 63(5), 699–710. https://doi.org/10.2478/s11756-008-0129-5
Koste, W. (1978). Rotatoria, die Rädertiere Mitteleuropas begründet von Max Voigt-Mongononta (p. 673). Gebrüder Borntraeger.
Lampert, W. (2006). Daphnia: Model herbivore, predator and prey. Polish Journal of Ecology, 54(4), 607–620. https://yadda.icm.edu.pl/agro/element/bwmeta1.element.agro-article-71d53fc5-e5fb-4eb5-b0ce-3ac0e76aca53
Legendre, P., & Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia, 129(2), 271–280. https://doi.org/10.1007/s004420100716
Li, Z., Xie, H., Peng, Z., Heino, J., Ma, Y., Xiong, F., Gao, W., Xin, W., Kong, C., Li, L., Fang, L., Wang, H., Feng, G., Wang, B., Jin, X., & Chen, Y. (2024). Hydrology and water quality drive multiple biological indicators in a dam-modified large river. Water Research X, 25, 100251. https://doi.org/10.1016/j.wroa.2024.100251
Liang, D., Wang, Q., Wei, N., Tang, C., Sun, X., & Yang, Y. (2020). Biological indicators of ecological quality in typical urban river-lake ecosystems: The planktonic rotifer community and its response to environmental factors. Ecological Indicators, 112, Article 106127. https://doi.org/10.1016/j.ecolind.2020.106127
Lomartire, S., Marques, J. C., & Gonçalves, A. M. M. (2021). The key role of zooplankton in ecosystem services: A perspective of interaction between zooplankton and fish recruitment. Ecological Indicators, 129, Article 107867. https://doi.org/10.1016/j.ecolind.2021.107867
Madyouni, H., Almanza, V., Benabdallah, S., Joaquim-Justo, C., Romdhane, M. S., Habaieb, H., & Deliege, J. F. (2023). Assessment of water quality variations and trophic state of the Joumine Reservoir (Tunisia) by multivariate analysis. Water, 15(17), 3019. https://doi.org/10.3390/w15173019
Magee, M. R., & Wu, C. H. (2017). Response of water temperatures and stratification to changing climate in three lakes with different morphometry. Hydrology and Earth System Sciences, 21(12), 6253–6274. https://doi.org/10.5194/hess-21-6253-2017
Magurran, A. E. (2013). Measuring biological diversity. John Wiley & Sons.
Mhamdi, M. A., Aleya, L., & Devaux, J. (1994). Phosphorus exchanges between sediment and water in trophically different reservoirs. Water Research, 28(9), 1971–1980. https://doi.org/10.1016/0043-1354(94)90172-4
Min, C., Johansson, L. S., Søndergaard, M., Lauridsen, T. L., Chen, F., Sh, T., & Jeppesen, E. (2021). Copepods as environmental indicator in lakes: Special focus on changes in the proportion of calanoids along nutrient and pH gradients. Aquatic Ecology, 55(4), 1241–1252. https://doi.org/10.1007/s10452-021-09877-y
Montagud, D., Soria, J. M., Soria-Perpinyà, X., Alfonso, T., & Vicente, E. (2019). A comparative study of four indexes based on zooplankton as trophic state indicators in reservoirs. Limnetica, 38(1), 291–302. https://doi.org/10.23818/limn.38.06
Moustaka-Gouni, M., Michaloudi, E., & Sommer, U. (2014). Modifying the PEG model for Mediterranean lakes – no biological winter and strong fish predation. Freshwater Biology, 59(6), 1136–1144. https://doi.org/10.1111/fwb.12335
Muñoz-Colmenares, M. E., Sendra, M. D., Sòria-Perpinyà, X., Soria, J. M., & Vicente, E. (2021). The use of zooplankton metrics to determine the trophic status and ecological potential: An approach in a large Mediterranean watershed. Water, 13(17), 2382. https://doi.org/10.3390/w13172382
Nogrady, T., & Segers, H. (2002). Rotifera 6: Asplanchnidae, Gastropodidae, Lindiidae, Microcodidae, Synchaetidae, Trochosphaeridae and Filinia. In Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 18/HJ Dumont (ed.).-Backhuys, 2002.-264 p.-.
Ochocka, A. (2021). ZIPLAS: Zooplankton Index for Polish Lakes’ Assessment: A new method to assess the ecological status of stratified lakes. Environmental Monitoring and Assessment, 193(10), 664. https://doi.org/10.1007/s10661-021-09390-7
Ochocka, A., & Pasztaleniec, A. (2016). Sensitivity of plankton indices to lake trophic conditions. Environmental Monitoring and Assessment, 188, 1–16. https://doi.org/10.1007/s10661-016-5634-3
Orduna, C., de Meo, I., Encina, L., Cid-Quintero, J. R., & Rodríguez-Ruiz, A. (2024). Spatio-temporal variation in the zooplankton community of the Zahara-El Gastor Reservoir (Cádiz, Spain). Limnetica, 44(1), 1. https://doi.org/10.23818/limn.44.04
Ould-Rouis, S. (1995). Systématique et répartition géographique des cladocères (Crustaceae) en Algérie. Université des Sciences et de la Technologie Houari Boumediene.
Parra, G., Matias, N. G., Guerrero Ruiz, F. J., & Boavida, M.-J. (2009). Short term fluctuations of zooplankton abundance during autumn circulation in two reservoirs with contrasting trophic state. Limnética, 28(1), 175–184. https://ddd.uab.cat/pub/limnetica/02138409v28n1/02138409v28n1p175.pdf
Perbiche-Neves, G., Pomari, J., Serafim-Júnior, M., & Nogueira, M. G. (2021). Cyclopoid copepods as indicators of trophic level in South American reservoirs: A new perspective at species level based on a wide spatial-temporal scale. Ecological Indicators, 127, Article 107744. https://doi.org/10.1016/j.ecolind.2021.107744
Picapedra, P. H. d. S., Fernandes, C., & Baumgartner, G. (2019). Structure and ecological aspects of zooplankton (Testate amoebae, Rotifera, Cladocera and Copepoda) in highland streams in southern Brazil. Acta Limnologica Brasiliensia, 31. https://doi.org/10.1590/s2179-975x2917
Pielou, E. C. (1966). The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131–144.
Pilla, R. M., Williamson, C. E., Overholt, E. P., Rose, K. C., Berger, S. A., Couture, R. M., ... & Yao, H. (2023). Deepwater dissolved oxygen shows little ecological memory between lake phenological seasons. Inland Waters, 13(3), 327–338. https://doi.org/10.1080/20442041.2023.2265802
Pinto, I., Rodrigues, S., Lage, O. M., & Antunes, S. C. (2021). Assessment of water quality in Aguieira reservoir: Ecotoxicological tools in addition to the water framework directive. Ecotoxicology and Environmental Safety, 208, Article 111583. https://doi.org/10.1016/j.ecoenv.2020.111583
Pinto, I., Nogueira, S., Rodrigues, S., Formigo, N., & Antunes, S. C. (2023). Can zooplankton add value to monitoring water quality? A case study of a meso/eutrophic Portuguese reservoir. Water, 15(9), 1678. https://doi.org/10.3390/w15091678
Pinto-Coelho, R., Pinel-Alloul, B., Méthot, G., & Havens, K. E. (2005). Crustacean zooplankton in lakes and reservoirs of temperate and tropical regions: Variation with trophic status. Canadian Journal of Fisheries and Aquatic Sciences, 62(2), 348–361. https://doi.org/10.1139/f04-178
Rezak, S., Bergane, C., & Bahmani, A. (2023). The effect of organic pollution on the seasonal dynamics of water quality of Hammam Boughrara Dam that is located in a semi-arid zone in the northwestern city of Tlemcen (Algeria). https://doi.org/10.21203/rs.3.rs-3290451/v1
Roberts, F. S. (2019). Measurement of biodiversity: Richness and evenness (pp. 203–224). https://doi.org/10.1007/978-3-030-22044-0_8
Rodier, J., Legube, B., & Merlet, N. (2009). L’analyse de l’eau – eaux naturelles, eaux résiduaires, eau de mer (9th ed.). Dunod.
Roma Stephan, L., Castilho-Noll, M. S., & Henry, R. (2017). Comparison among zooplankton communities in hydrologically different lentic ecosystems. Limnetica, 36, 99–112. https://doi.org/10.23818/limn.36.08
Rosińska, J., Romanowicz-Brzozowska, W., Kozak, A., & Gołdyn, R. (2019). Zooplankton changes during bottom-up and top-down control due to sustainable restoration in a shallow urban lake. Environmental Science and Pollution Research, 26(19), 19575–19587. https://doi.org/10.1007/s11356-019-05107-z
Sagouis, A., Jabot, F., & Argillier, C. (2017). Taxonomic versus functional diversity metrics: How do fish communities respond to anthropogenic stressors in reservoirs? Ecology of Freshwater Fish, 26(4), 621–635. https://doi.org/10.1111/eff.12306
Santos, G. de S., Silva, E. E. C., Barroso, G. F., Pasa, V. M. D., & Eskinazi-Sant’Anna, E. M. (2022). Do metals differentiate zooplankton communities in shallow and deep lakes affected by mining tailings? The case of the Fundão dam failure (Brazil). Science of The Total Environment, 806, 150493. https://doi.org/10.1016/j.scitotenv.2021.150493
Sarma, S. S. S., & Nandini, S. (2019). Comparative population dynamics of six brachionid rotifers (Rotifera) fed seston from a hypertrophic, high altitude shallow waterbody from Mexico. Hydrobiologia, 844(1), 55–65. https://doi.org/10.1007/s10750-018-3875-6
Schindler, D. W. (2012). The dilemma of controlling cultural eutrophication of lakes. Proceedings of the Royal Society b: Biological Sciences, 279(1746), 4322–4333. https://doi.org/10.1098/rspb.2012.1032
Shannon, C. E., & Weaver, W. (1949). La théorie mathématique de la communication (pp. 1–117). University of Illinois Press.
Simões, N. R., Nunes, A. H., Dias, J. D., Lansac-Tôha, F. A., Velho, L. F. M., & Bonecker, C. C. (2015). Impact of reservoirs on zooplankton diversity and implications for the conservation of natural aquatic environments. Hydrobiologia, 758(1), 3–17. https://doi.org/10.1007/s10750-015-2260-y
Sládeček, V. (1983). Rotifers as indicators of water quality. Hydrobiologia, 100(1), 169–201. https://doi.org/10.1007/BF00027429
Smaoune, G., Bouchelouche, D., Taleb, A., & Arab, A. (2021). Evaluation of the trophic status in three reservoirs in Algeria (north west) using physicochemical analysis and rotifers structure. Environmental Science and Pollution Research, 28(34), 46627–46642. https://doi.org/10.1007/S11356-020-11233-W
Smith, V. H. (2003). Eutrophication of freshwater and coastal marine ecosystems a global problem. Environmental Science and Pollution Research, 10(2), 126–139. https://doi.org/10.1065/espr2002.12.142
Smith, R. L., & Smith, T. M. (2015). Elements of ecology. Pearson Higher Ed.
Stamou, G., Katsiapi, M., Moustaka-Gouni, M., & Michaloudi, E. (2019). Trophic state assessment based on zooplankton communities in Mediterranean lakes. Hydrobiologia, 844(1), 83–103. https://doi.org/10.1007/s10750-018-3880-9
Stamou, G., Katsiapi, M., Moustaka-Gouni, M., & Michaloudi, E. (2021). The neglected zooplankton communities as indicators of ecological water quality of Mediterranean lakes. Limnetica, 40(2), 359–373. https://doi.org/10.23818/limn.40.24
Umi, W. A. D., Yusoff, F. M., Aris, A. Z., & Sharip, Z. (2018). Rotifer community structure in tropical lakes with different environmental characteristics related to ecosystem health. Journal of Environmental Biology, 39(5), 795–807. https://doi.org/10.22438/jeb/39/5(SI)/30
Umi, W. A. D., Yusoff, F. M., Aris, A. Z., Sharip, Z., & Sinev, A. Y. (2020). Planktonic microcrustacean community structure varies with trophic status and environmental variables in tropical shallow lakes in Malaysia. Diversity, 12(9), 322. https://doi.org/10.3390/d12090322
Umi, W. A. D., Yusoff, F. M., Balia Yusof, Z. N., Ramli, N. M., Sinev, A. Y., & Toda, T. (2024). Composition, distribution, and biodiversity of zooplanktons in tropical lentic ecosystems with different environmental conditions. Arthropoda, 2(1), 33–54. https://doi.org/10.3390/arthropoda2010003
Verspagen, J. M., Van de Waal, D. B., Finke, J. F., Visser, P. M., Van Donk, E., & Huisman, J. (2014). Rising CO2 levels will intensify phytoplankton blooms in eutrophic and hypertrophic lakes. PLoS One, 9(8), e104325. https://doi.org/10.1371/journal.pone.0104325
Wagaw, S., Mengistou, S., & Getahun, A. (2023). Zooplankton community structure in relation to environmental variables in a tropical endorheic Soda Lake Shala, Ethiopia. Journal of Freshwater Ecology, 38(1). https://doi.org/10.1080/02705060.2023.2188882
Wetzel, R. G., spsampsps Likens, G. E. (1991). Limnological analyses. Springer New York. https://doi.org/10.1007/978-1-4757-4098-1
Whitman, R. L., Nevers, M. B., Goodrich, M. L., Murphy, P. C., & Davis, B. M. (2004). Characterization of Lake Michigan coastal lakes using zooplankton assemblages. Ecological Indicators, 4(4), 277–286. https://doi.org/10.1016/j.ecolind.2004.08.001
Yap, C. K. (2013). Variations of electrical conductivity between upstream and downstream of Langat River, Malaysia: Its significance as a single indicator of water quality deterioration. Pertanika Journal of Tropical Agricultural Science, 36(4), 299–310.
Yin, L., Ji, Y., Zhang, Y., Chong, L., & Chen, L. (2018). Rotifer community structure and its response to environmental factors in the Backshore Wetland of Expo Garden, Shanghai. Aquaculture and Fisheries, 3(2), 90–97. https://doi.org/10.1016/j.aaf.2017.11.001
Yin, J., Xia, J., Xia, Z., Cai, W., Liu, Z., Xu, K., Wang, Y., Zhang, R., & Dong, X. (2022). Temporal variation and spatial distribution in the water environment helps explain seasonal dynamics of zooplankton in river-type reservoir. Sustainability, 14(21), 13719. https://doi.org/10.3390/su142113719
Zhang, K., Wan, Q., & Xi, Y.-L. (2019). Competition between Brachionus calyciflorus and Brachionus angularis (Rotifera) in relation to algal food level and initial population density. Annales De Limnologie - International Journal of Limnology, 55, 2. https://doi.org/10.1051/limn/2019001

MeSH Term

Zooplankton
Algeria
Animals
Biodiversity
Environmental Monitoring
Ecosystem

Word Cloud

Similar Articles

Cited By