Phylogenomics provides comprehensive insights into the evolutionary relationships among cultivated buckwheat species.

Yaliang Shi, Bo Li, Yuanfen Gao, Xiaohan Wang, Yang Liu, Xiang Lu, Hao Lin, Wei Li, Dili Lai, Ming Hao, Jia Gao, Kaixuan Zhang, Dengcai Liu, Sun-Hee Woo, Muriel Quinet, Alisdair R Fernie, Xu Liu, Yuqi He, Meiliang Zhou
Author Information
  1. Yaliang Shi: National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
  2. Bo Li: Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China.
  3. Yuanfen Gao: National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
  4. Xiaohan Wang: National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
  5. Yang Liu: National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
  6. Xiang Lu: National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
  7. Hao Lin: National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
  8. Wei Li: National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
  9. Dili Lai: National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
  10. Ming Hao: Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 610000, China.
  11. Jia Gao: National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
  12. Kaixuan Zhang: National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
  13. Dengcai Liu: Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 610000, China.
  14. Sun-Hee Woo: Department of Crop Science, Chungbuk National University, Cheong-ju, 28644, Republic of Korea.
  15. Muriel Quinet: Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université Catholique de Louvain, Croix du Sud 45, Boîte L7.07.13, B-1348, Louvain-La-Neuve, Belgium.
  16. Alisdair R Fernie: Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, 14476, Germany.
  17. Xu Liu: National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. liuxu03@caas.cn.
  18. Yuqi He: National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. heyuqi@caas.cn.
  19. Meiliang Zhou: National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. zhoumeiliang@caas.cn.

Abstract

BACKGROUND: Buckwheat belongs to the family Polygonaceae and genus Fagopyrum, which is characterized by high flavonoid content, short growth period, and strong environmental adaptability. Buckwheat has three cultivated species, including the annual food crops common buckwheat (Fagopyrum esculentum) and Tartary buckwheat (Fagopyrum tataricum), and the perennial traditional herbal medicine golden buckwheat (Fagopyrum cymosum). However, the unclear phylogenetic relationships among these three species based on genomic data limit buckwheat interspecific hybridization and genetic improvement.
RESULTS: Despite their enormous differences in morphology and genome, we confirm the closet relationship between Fagopyrum cymosum and Fagopyrum tataricum, but not Fagopyrum esculentum. The results are also verified through collecting and sequencing an extensive sampling of cultivated/wild populations across all environmentally distinct regions in which these species are found. The changes in flowering time and style morphology controlled by the AP1 and S-ELF3 loci significantly contribute to the buckwheat speciation. The introgression from Fagopyrum cymosum into wild Fagopyrum tataricum explains why wild Fagopyrum tataricum exhibits seed morphology similar to Fagopyrum cymosum. Furthermore, the convergent traits of leaf morphology and higher flavonoid content between Fagopyrum cymosum and wild Fagopyrum esculentum are linked to high-altitude adaptation. Fagopyrum cymosum is more closely related to wild Fagopyrum tataricum, a fact that is confirmed by interspecific hybridization.
CONCLUSIONS: Our work provides a valuable example of how phylogenomics can be efficiently utilized for phylogenetic relationship analysis between crops and their wild species relatives, as well as elucidating the plant speciation from the perspectives of genomic evolution and adaptive mechanisms.

Keywords

References

Natl Sci Rev. 2020 Jun;7(6):952-963 [PMID: 34692117]
New Phytol. 2022 Jul;235(2):472-487 [PMID: 35451504]
Mol Phylogenet Evol. 2008 May;47(2):757-82 [PMID: 18375151]
Genome Biol Evol. 2014 Aug;6(8):2122-8 [PMID: 25091388]
Carbohydr Polym. 2022 Jun 1;285:119238 [PMID: 35287861]
Plant J. 2003 Apr;34(2):173-85 [PMID: 12694593]
Mol Phylogenet Evol. 2019 Sep;138:156-173 [PMID: 31112781]
Chin Med. 2021 Sep 16;16(1):89 [PMID: 34530893]
Proc Natl Acad Sci U S A. 2023 May 30;120(22):e2221181120 [PMID: 37216511]
BMC Genomics. 2023 Oct 10;24(1):602 [PMID: 37817095]
Mol Plant. 2021 Feb 1;14(2):208-222 [PMID: 33220509]
Bioinformatics. 2014 Sep 1;30(17):i541-8 [PMID: 25161245]
Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
ISME J. 2021 Jan;15(1):211-227 [PMID: 32943748]
Front Plant Sci. 2020 Jul 16;11:1073 [PMID: 32765557]
Theor Appl Genet. 2007 Nov;115(8):1053-65 [PMID: 17721773]
Plant J. 1998 Dec;16(6):735-43 [PMID: 10069079]
Mol Biol Evol. 2019 Nov 1;36(11):2591-2603 [PMID: 31273382]
Sci Rep. 2022 Oct 29;12(1):18263 [PMID: 36309574]
Anim Genet. 2020 Mar;51(2):157-165 [PMID: 31943284]
Imeta. 2024 Jun 12;3(4):e211 [PMID: 39135687]
Trends Ecol Evol. 2019 Mar;34(3):239-248 [PMID: 30691998]
Science. 2017 Apr 7;356(6333):92-95 [PMID: 28336562]
J Exp Bot. 2016 Mar;67(6):1625-38 [PMID: 26956504]
Cell Syst. 2016 Jul;3(1):95-8 [PMID: 27467249]
Genome Biol. 2020 Sep 10;21(1):241 [PMID: 32912315]
Theor Appl Genet. 2022 Dec;135(12):4151-4167 [PMID: 36136128]
Nat Methods. 2022 Jun;19(6):671-674 [PMID: 35534630]
BMC Plant Biol. 2023 Apr 24;23(1):212 [PMID: 37088810]
Plant Methods. 2019 May 21;15:50 [PMID: 31139240]
Bioinformatics. 2010 Mar 1;26(5):589-95 [PMID: 20080505]
Biotechnol Adv. 2020 Mar - Apr;39:107479 [PMID: 31707074]
BMC Biol. 2024 Apr 12;22(1):82 [PMID: 38609969]
J Exp Bot. 2010 May;61(9):2247-54 [PMID: 20413527]
Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
PeerJ. 2019 May 03;7:e6815 [PMID: 31110920]
Nat Biotechnol. 2019 Aug;37(8):907-915 [PMID: 31375807]
Plant Physiol. 2010 Jun;153(2):806-20 [PMID: 20357139]
New Phytol. 2022 Sep;235(5):1927-1943 [PMID: 35701896]
Mol Biol Evol. 2024 Oct 4;41(10): [PMID: 39324637]
Genome Biol. 2021 Jan 12;22(1):23 [PMID: 33430931]
Bioinformatics. 2018 Sep 1;34(17):i884-i890 [PMID: 30423086]
Crit Rev Food Sci Nutr. 2023;63(5):657-673 [PMID: 34278850]
J Integr Plant Biol. 2020 Dec;62(12):1868-1879 [PMID: 32619080]
Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
Food Chem. 2016 Jul 15;203:231-245 [PMID: 26948610]
Plant Biotechnol J. 2024 Aug;22(8):2267-2281 [PMID: 38526838]
J Integr Plant Biol. 2021 Jan;63(1):251-272 [PMID: 33325153]
Nucleic Acids Res. 2010 Sep;38(16):e164 [PMID: 20601685]
Plant Physiol. 2017 Jun;174(2):1097-1109 [PMID: 28385730]
BMC Biol. 2021 Jan 8;19(1):2 [PMID: 33419433]
Nat Commun. 2019 Nov 18;10(1):5218 [PMID: 31740675]
Sci Rep. 2023 Sep 30;13(1):16471 [PMID: 37777595]
Sci Rep. 2016 Jul 04;6:28591 [PMID: 27373366]
Food Chem. 2021 Feb 15;338:127982 [PMID: 32950005]
J Integr Plant Biol. 2023 Jun;65(6):1423-1441 [PMID: 36680412]
Front Plant Sci. 2022 Feb 08;12:794137 [PMID: 35211131]
Plant Cell Physiol. 2024 Jul 30;65(7):1184-1196 [PMID: 38625713]
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D572-80 [PMID: 16381935]
Cell Syst. 2016 Jul;3(1):99-101 [PMID: 27467250]
Plant Commun. 2024 Feb 12;5(2):100719 [PMID: 37718509]
Curr Biol. 2023 Oct 9;33(19):4037-4051.e5 [PMID: 37643619]
Mol Ecol Resour. 2021 Feb;21(2):584-595 [PMID: 33012121]
Bioinformatics. 2011 Aug 1;27(15):2156-8 [PMID: 21653522]
AoB Plants. 2021 Mar 04;13(2):plab012 [PMID: 33796247]
NAR Genom Bioinform. 2021 Jan 06;3(1):lqaa108 [PMID: 33575650]
Adv Sci (Weinh). 2024 Nov;11(43):e2403603 [PMID: 39312476]
Plant Biotechnol J. 2024 Mar;22(3):544-554 [PMID: 37961986]
Evol Appl. 2024 May 03;17(5):e13691 [PMID: 38707994]
Front Genet. 2022 Nov 09;13:1047100 [PMID: 36437930]
Nat Rev Microbiol. 2021 Aug;19(8):485-500 [PMID: 33767366]
Mol Phylogenet Evol. 2024 Jul;196:108072 [PMID: 38615706]
Methods Mol Biol. 2012;926:87-97 [PMID: 22975958]
Genome Biol. 2019 Nov 14;20(1):238 [PMID: 31727128]
Mol Ecol. 2024 Jun;33(11):e17353 [PMID: 38613250]
Plant J. 2024 Sep;119(6):2585-2598 [PMID: 38972041]
Proc Natl Acad Sci U S A. 2022 Jul 5;119(27):e2100036119 [PMID: 35771940]
Evolution. 2011 Jul;65(7):1827-40 [PMID: 21729041]
Nat Genet. 2017 Feb;49(2):303-309 [PMID: 28024154]
Pest Manag Sci. 2023 Jun;79(6):2247-2254 [PMID: 36785882]
Nat Commun. 2019 Nov 25;10(1):5360 [PMID: 31767853]
Plant Physiol Biochem. 2024 May;210:108637 [PMID: 38670031]
Nat Plants. 2023 Aug;9(8):1236-1251 [PMID: 37563460]
Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):E1254-63 [PMID: 22065743]
Food Chem. 2021 Dec 15;365:130459 [PMID: 34216911]
Mol Plant. 2023 Sep 4;16(9):1427-1444 [PMID: 37649255]
Front Plant Sci. 2024 Jun 11;15:1380157 [PMID: 38919820]
Plant Physiol. 2004 Jul;135(3):1502-13 [PMID: 15247372]
Glob Chang Biol. 2023 Feb;29(4):1144-1159 [PMID: 36349544]
Plant Cell. 2024 May 1;36(5):1257-1311 [PMID: 38301734]
J Integr Plant Biol. 2021 Jun;63(6):981-994 [PMID: 33090664]
Genome Res. 2009 Sep;19(9):1655-64 [PMID: 19648217]
Curr Opin Genet Dev. 2022 Oct;76:101952 [PMID: 35849861]
Genome Biol. 2008 Jan 11;9(1):R7 [PMID: 18190707]
PLoS Genet. 2013 Oct;9(10):e1003905 [PMID: 24204310]
New Phytol. 2021 May;230(3):938-942 [PMID: 33474759]
Plant J. 2001 Feb;25(4):441-51 [PMID: 11260500]
BMC Plant Biol. 2023 Mar 22;23(1):154 [PMID: 36944951]
Plant Cell. 2024 May 1;36(5):1334-1357 [PMID: 38345422]
J Hered. 2001 Sep-Oct;92(5):404-8 [PMID: 11773247]
Mol Ecol. 2011 Aug;20(15):3087-101 [PMID: 21740474]
Mol Phylogenet Evol. 2020 Sep;150:106878 [PMID: 32512196]
Bioinformatics. 2021 Apr 1;36(22-23):5516-5518 [PMID: 33325502]
Plant J. 2023 Mar;113(6):1259-1277 [PMID: 36648165]
BMC Biol. 2023 Apr 17;21(1):87 [PMID: 37069628]
Proc Natl Acad Sci U S A. 2014 Aug 12;111(32):11882-7 [PMID: 25074914]
Nucleic Acids Res. 1980 Oct 10;8(19):4321-5 [PMID: 7433111]
New Phytol. 2021 Apr;230(2):521-534 [PMID: 33340114]
Mol Ecol. 2021 Mar;30(5):1155-1173 [PMID: 33382161]
Genome Biol. 2024 Feb 27;25(1):61 [PMID: 38414075]
Nat Plants. 2023 Jul;9(7):1130-1142 [PMID: 37349549]
Plant Cell Environ. 2024 Oct 6;: [PMID: 39370759]
Food Chem. 2021 Jan 15;335:127653 [PMID: 32739818]

Grants

  1. 32360054/National Natural Science Foundation of China
  2. 32161143005/National Natural Science Foundation of China
  3. 2023YFF1002500/National Key R&D Program of China

MeSH Term

Fagopyrum
Phylogeny
Genome, Plant
Evolution, Molecular
Genomics

Word Cloud

Similar Articles

Cited By