URL: | http://plasmodb.org/plasmo/ |
Full name: | Plasmodium Genomics Resource |
Description: | PlasmoDB is a genome database for the genus Plasmodium, a set of single-celled eukaryotic pathogens that cause human and animal diseases, including malaria. |
Year founded: | 2001 |
Last update: | 2018-04-25 |
Version: | v37.0 |
Accessibility: |
Accessible
|
Country/Region: | United States |
Data type: | |
Data object: | |
Database category: | |
Major species: | |
Keywords: |
University/Institution: | University of Pennsylvania |
Address: | Philadelphia, Pennsylvania 19104, USA |
City: | Philadelphia |
Province/State: | Pennsylvania |
Country/Region: | United States |
Contact name (PI/Team): | Omar S. Harb |
Contact email (PI/Helpdesk): | oharb@pcbi.upenn.edu |
PlasmoDB: a functional genomic database for malaria parasites. [PMID: 18957442]
PlasmoDB (http://PlasmoDB.org) is a functional genomic database for Plasmodium spp. that provides a resource for data analysis and visualization in a gene-by-gene or genome-wide scale. PlasmoDB belongs to a family of genomic resources that are housed under the EuPathDB (http://EuPathDB.org) Bioinformatics Resource Center (BRC) umbrella. The latest release, PlasmoDB 5.5, contains numerous new data types from several broad categories--annotated genomes, evidence of transcription, proteomics evidence, protein function evidence, population biology and evolution. Data in PlasmoDB can be queried by selecting the data of interest from a query grid or drop down menus. Various results can then be combined with each other on the query history page. Search results can be downloaded with associated functional data and registered users can store their query history for future retrieval or analysis. |
PlasmoDB: the Plasmodium genome resource. An integrated database providing tools for accessing, analyzing and mapping expression and sequence data (both finished and unfinished). [PMID: 11752262]
PlasmoDB (http://PlasmoDB.org) is the official database of the Plasmodium falciparum genome sequencing consortium. This resource incorporates finished and draft genome sequence data and annotation emerging from Plasmodium sequencing projects. PlasmoDB currently houses information from five parasite species and provides tools for cross-species comparisons. Sequence information is also integrated with other genomic-scale data emerging from the Plasmodium research community, including gene expression analysis from EST, SAGE and microarray projects. The relational schemas used to build PlasmoDB [Genomics Unified Schema (GUS) and RNA Abundance Database (RAD)] employ a highly structured format to accommodate the diverse data types generated by sequence and expression projects. A variety of tools allow researchers to formulate complex, biologically based queries of the database. A version of the database is also available on CD-ROM (Plasmodium GenePlot), facilitating access to the data in situations where Internet access is difficult (e.g. by malaria researchers working in the field). The goal of PlasmoDB is to enhance utilization of the vast quantities of data emerging from genome-scale projects by the global malaria research community. |
Mining the Plasmodium genome database to define organellar function: what does the apicoplast do? [PMID: 11839180]
Apicomplexan species constitute a diverse group of parasitic protozoa, which are responsible for a wide range of diseases in many organisms. Despite differences in the diseases they cause, these parasites share an underlying biology, from the genetic controls used to differentiate through the complex parasite life cycle, to the basic biochemical pathways employed for intracellular survival, to the distinctive cell biology necessary for host cell attachment and invasion. Different parasites lend themselves to the study of different aspects of parasite biology: Eimeria for biochemical studies, Toxoplasma for molecular genetic and cell biological investigation, etc. The Plasmodium falciparum Genome Project contributes the first large-scale genomic sequence for an apicomplexan parasite. The Plasmodium Genome Database (http://PlasmoDB.org) has been designed to permit individual investigators to ask their own questions, even prior to formal release of the reference P. falciparum genome sequence. As a case in point, PlasmoDB has been exploited to identify metabolic pathways associated with the apicomplexan plastid, or 'apicoplast' - an essential organelle derived by secondary endosymbiosis of an alga, and retention of the algal plastid. |
PlasmoDB: An integrative database of the Plasmodium falciparum genome. Tools for accessing and analyzing finished and unfinished sequence data. The Plasmodium Genome Database Collaborative. [PMID: 11125051]
The PLASMODIUM: falciparum Genome Database (http://PlasmoDB.org) integrates sequence information, automated analyses and annotation data emerging from the P.falciparum genome sequencing consortium. To date, raw sequence coverage is available for >90% of the genome, and two chromosomes have been finished and annotated. Data in PlasmoDB are organized by chromosome (1-14), and can be accessed using a variety of tools for graphical and text-based browsing or downloaded in various file formats. The GUS (Genomics Unified Schema) implementation of PlasmoDB provides a multi-species genomic relational database, incorporating data from human and mouse, as well as P.falciparum. The relational schema uses a highly structured format to accommodate diverse data sets related to genomic sequence and gene expression. Tools have been designed to facilitate complex biological queries, including many that are specific to PLASMODIUM: parasites and malaria as a disease. Additional projects seek to integrate genomic information with the rich data sets now becoming available for RNA transcription, protein expression, metabolic pathways, genetic and physical mapping, antigenic and population diversity, and phylogenetic relationships with other apicomplexan parasites. The overall goal of PlasmoDB is to facilitate Internet- and CD-ROM-based access to both finished and unfinished sequence information by the global malaria research community. |