Description: |
Our database aims to bridge the gap between agent repositories and studies documenting the effect of antimicrobial combination therapies. Most notably, our primary aim is to compile data on the combination of antimicrobial agents, namely natural products such as AMP. To meet this purpose, we have developed a data curation workflow that combines text mining, manual expert curation and graph analysis and supports the reconstruction of AMP-Drug combinations.
The initial release of the database focused on antimicrobial combinations that have been experimentally tested againstPseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Listeria monocytogenes and Candida albicans, which are prominent pathogenic organisms and are well-known for their wide and growing resistance to conventional antimicrobials. Besides maintaining these data collections, we are extending literature screening to a wider collection of organisms.
|