URL: | http://www.biocreative.org/resources/corpora/bc-iv-go-task-corpus |
Full name: | Critical Assessment of Information Extraction systems in Biology |
Description: | The BioCreAtIvE challenge evaluation consists of a community-wide effort for evaluating text mining and information extraction systems applied to the biological domain. |
Year founded: | 2005 |
Last update: | 2016-09-01 |
Version: | v5.0 |
Accessibility: |
Accessible
|
Country/Region: | United States |
Data type: | |
Data object: |
NA
|
Database category: | |
Major species: |
NA
|
Keywords: |
University/Institution: | National Center for Biotechnology Information |
Address: | National Center for Biotechnology Information, Bethesda, MD 20894, USA |
City: | Bethesda |
Province/State: | MD |
Country/Region: | United States |
Contact name (PI/Team): | Zhiyong Lu |
Contact email (PI/Helpdesk): | zhiyong.lu@nih.gov |
27589962 |
BioCreative V BioC track overview: collaborative biocurator assistant task for BioGRID. [PMID: 27589962]
Kim S, Islamaj Doğan R, Chatr-Aryamontri A, Chang CS, Oughtred R, Rust J, Batista-Navarro R, Carter J, Ananiadou S, Matos S, Santos A, Campos D, Oliveira JL, Singh O, Jonnagaddala J, Dai HJ, Su EC, Chang YC, Su YC, Chu CH, Chen CC, Hsu WL, Peng Y, Arighi C, Wu CH, Vijay-Shanker K, Aydın F, Hüsünbeyi ZM, Özgür A, Shin SY, Kwon D, Dolinski K, Tyers M, Wilbur WJ, Comeau DC.
BioC is a simple XML format for text, annotations and relations, and was developed to achieve interoperability for biomedical text processing. Following the success of BioC in BioCreative IV, the BioCreative V BioC track addressed a collaborative task to build an assistant system for BioGRID curation. In this paper, we describe the framework of the collaborative BioC task and discuss our findings based on the user survey. This track consisted of eight subtasks including gene/protein/organism named entity recognition, protein-protein/genetic interaction passage identification and annotation visualization. Using BioC as their data-sharing and communication medium, nine teams, world-wide, participated and contributed either new methods or improvements of existing tools to address different subtasks of the BioC track. Results from different teams were shared in BioC and made available to other teams as they addressed different subtasks of the track. In the end, all submitted runs were merged using a machine learning classifier to produce an optimized output. The biocurator assistant system was evaluated by four BioGRID curators in terms of practical usability. The curators' feedback was overall positive and highlighted the user-friendly design and the convenient gene/protein curation tool based on text mining.Database URL: http://www.biocreative.org/tasks/biocreative-v/track-1-bioc/. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the US. |
27589961 |
Overview of the interactive task in BioCreative V. [PMID: 27589961]
Wang Q, S Abdul S, Almeida L, Ananiadou S, Balderas-Martínez YI, Batista-Navarro R, Campos D, Chilton L, Chou HJ, Contreras G, Cooper L, Dai HJ, Ferrell B, Fluck J, Gama-Castro S, George N, Gkoutos G, Irin AK, Jensen LJ, Jimenez S, Jue TR, Keseler I, Madan S, Matos S, McQuilton P, Milacic M, Mort M, Natarajan J, Pafilis E, Pereira E, Rao S, Rinaldi F, Rothfels K, Salgado D, Silva RM, Singh O, Stefancsik R, Su CH, Subramani S, Tadepally HD, Tsaprouni L, Vasilevsky N, Wang X, Chatr-Aryamontri A, Laulederkind SJ, Matis-Mitchell S, McEntyre J, Orchard S, Pundir S, Rodriguez-Esteban R, Van Auken K, Lu Z, Schaeffer M, Wu CH, Hirschman L, Arighi CN.
Fully automated text mining (TM) systems promote efficient literature searching, retrieval, and review but are not sufficient to produce ready-to-consume curated documents. These systems are not meant to replace biocurators, but instead to assist them in one or more literature curation steps. To do so, the user interface is an important aspect that needs to be considered for tool adoption. The BioCreative Interactive task (IAT) is a track designed for exploring user-system interactions, promoting development of useful TM tools, and providing a communication channel between the biocuration and the TM communities. In BioCreative V, the IAT track followed a format similar to previous interactive tracks, where the utility and usability of TM tools, as well as the generation of use cases, have been the focal points. The proposed curation tasks are user-centric and formally evaluated by biocurators. In BioCreative V IAT, seven TM systems and 43 biocurators participated. Two levels of user participation were offered to broaden curator involvement and obtain more feedback on usability aspects. The full level participation involved training on the system, curation of a set of documents with and without TM assistance, tracking of time-on-task, and completion of a user survey. The partial level participation was designed to focus on usability aspects of the interface and not the performance per se In this case, biocurators navigated the system by performing pre-designed tasks and then were asked whether they were able to achieve the task and the level of difficulty in completing the task. In this manuscript, we describe the development of the interactive task, from planning to execution and discuss major findings for the systems tested.Database URL: http://www.biocreative.org. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the US. |
27524807 |
PIPE: a protein-protein interaction passage extraction module for BioCreative challenge. [PMID: 27524807]
Chang YC, Chu CH, Su YC, Chen CC, Hsu WL.
Identifying the interactions between proteins mentioned in biomedical literatures is one of the frequently discussed topics of text mining in the life science field. In this article, we propose PIPE, an interaction pattern generation module used in the Collaborative Biocurator Assistant Task at BioCreative V (http://www.biocreative.org/) to capture frequent protein-protein interaction (PPI) patterns within text. We also present an interaction pattern tree (IPT) kernel method that integrates the PPI patterns with convolution tree kernel (CTK) to extract PPIs. Methods were evaluated on LLL, IEPA, HPRD50, AIMed and BioInfer corpora using cross-validation, cross-learning and cross-corpus evaluation. Empirical evaluations demonstrate that our method is effective and outperforms several well-known PPI extraction methods. DATABASE URL. © The Author(s) 2016. Published by Oxford University Press. |
27402677 |
BioCreative V track 4: a shared task for the extraction of causal network information using the Biological Expression Language. [PMID: 27402677]
Rinaldi F, Ellendorff TR, Madan S, Clematide S, van der Lek A, Mevissen T, Fluck J.
Automatic extraction of biological network information is one of the most desired and most complex tasks in biological and medical text mining. Track 4 at BioCreative V attempts to approach this complexity using fragments of large-scale manually curated biological networks, represented in Biological Expression Language (BEL), as training and test data. BEL is an advanced knowledge representation format which has been designed to be both human readable and machine processable. The specific goal of track 4 was to evaluate text mining systems capable of automatically constructing BEL statements from given evidence text, and of retrieving evidence text for given BEL statements. Given the complexity of the task, we designed an evaluation methodology which gives credit to partially correct statements. We identified various levels of information expressed by BEL statements, such as entities, functions, relations, and introduced an evaluation framework which rewards systems capable of delivering useful BEL fragments at each of these levels. The aim of this evaluation method is to help identify the characteristics of the systems which, if combined, would be most useful for achieving the overall goal of automatically constructing causal biological networks from text. © The Author(s) 2016. Published by Oxford University Press. |
27161011 |
BioCreative V CDR task corpus: a resource for chemical disease relation extraction. [PMID: 27161011]
Li J, Sun Y, Johnson RJ, Sciaky D, Wei CH, Leaman R, Davis AP, Mattingly CJ, Wiegers TC, Lu Z.
Community-run, formal evaluations and manually annotated text corpora are critically important for advancing biomedical text-mining research. Recently in BioCreative V, a new challenge was organized for the tasks of disease named entity recognition (DNER) and chemical-induced disease (CID) relation extraction. Given the nature of both tasks, a test collection is required to contain both disease/chemical annotations and relation annotations in the same set of articles. Despite previous efforts in biomedical corpus construction, none was found to be sufficient for the task. Thus, we developed our own corpus called BC5CDR during the challenge by inviting a team of Medical Subject Headings (MeSH) indexers for disease/chemical entity annotation and Comparative Toxicogenomics Database (CTD) curators for CID relation annotation. To ensure high annotation quality and productivity, detailed annotation guidelines and automatic annotation tools were provided. The resulting BC5CDR corpus consists of 1500 PubMed articles with 4409 annotated chemicals, 5818 diseases and 3116 chemical-disease interactions. Each entity annotation includes both the mention text spans and normalized concept identifiers, using MeSH as the controlled vocabulary. To ensure accuracy, the entities were first captured independently by two annotators followed by a consensus annotation: The average inter-annotator agreement (IAA) scores were 87.49% and 96.05% for the disease and chemicals, respectively, in the test set according to the Jaccard similarity coefficient. Our corpus was successfully used for the BioCreative V challenge tasks and should serve as a valuable resource for the text-mining research community.Database URL: http://www.biocreative.org/tasks/biocreative-v/track-3-cdr/. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the United States. |
27081156 |
Exploiting syntactic and semantics information for chemical-disease relation extraction. [PMID: 27081156]
Zhou H, Deng H, Chen L, Yang Y, Jia C, Huang D.
Identifying chemical-disease relations (CDR) from biomedical literature could improve chemical safety and toxicity studies. This article proposes a novel syntactic and semantic information exploitation method for CDR extraction. The proposed method consists of a feature-based model, a tree kernel-based model and a neural network model. The feature-based model exploits lexical features, the tree kernel-based model captures syntactic structure features, and the neural network model generates semantic representations. The motivation of our method is to fully utilize the nice properties of the three models to explore diverse information for CDR extraction. Experiments on the BioCreative V CDR dataset show that the three models are all effective for CDR extraction, and their combination could further improve extraction performance.Database URL:http://www.biocreative.org/resources/corpora/biocreative-v-cdr-corpus/. © The Author(s) 2016. Published by Oxford University Press. |
26994911 |
Assessing the state of the art in biomedical relation extraction: overview of the BioCreative V chemical-disease relation (CDR) task. [PMID: 26994911]
Wei CH, Peng Y, Leaman R, Davis AP, Mattingly CJ, Li J, Wiegers TC, Lu Z.
Manually curating chemicals, diseases and their relationships is significantly important to biomedical research, but it is plagued by its high cost and the rapid growth of the biomedical literature. In recent years, there has been a growing interest in developing computational approaches for automatic chemical-disease relation (CDR) extraction. Despite these attempts, the lack of a comprehensive benchmarking dataset has limited the comparison of different techniques in order to assess and advance the current state-of-the-art. To this end, we organized a challenge task through BioCreative V to automatically extract CDRs from the literature. We designed two challenge tasks: disease named entity recognition (DNER) and chemical-induced disease (CID) relation extraction. To assist system development and assessment, we created a large annotated text corpus that consisted of human annotations of chemicals, diseases and their interactions from 1500 PubMed articles. 34 teams worldwide participated in the CDR task: 16 (DNER) and 18 (CID). The best systems achieved an F-score of 86.46% for the DNER task--a result that approaches the human inter-annotator agreement (0.8875)--and an F-score of 57.03% for the CID task, the highest results ever reported for such tasks. When combining team results via machine learning, the ensemble system was able to further improve over the best team results by achieving 88.89% and 62.80% in F-score for the DNER and CID task, respectively. Additionally, another novel aspect of our evaluation is to test each participating system's ability to return real-time results: the average response time for each team's DNER and CID web service systems were 5.6 and 9.3?s, respectively. Most teams used hybrid systems for their submissions based on machining learning. Given the level of participation and results, we found our task to be successful in engaging the text-mining research community, producing a large annotated corpus and improving the results of automatic disease recognition and CDR extraction. Database URL: http://www.biocreative.org/tasks/biocreative-v/track-3-cdr/. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the US. |
25157073 |
Overview of the gene ontology task at BioCreative IV. [PMID: 25157073]
Mao Y, Van Auken K, Li D, Arighi CN, McQuilton P, Hayman GT, Tweedie S, Schaeffer ML, Laulederkind SJ, Wang SJ, Gobeill J, Ruch P, Luu AT, Kim JJ, Chiang JH, Chen YD, Yang CJ, Liu H, Zhu D, Li Y, Yu H, Emadzadeh E, Gonzalez G, Chen JM, Dai HJ, Lu Z.
Gene ontology (GO) annotation is a common task among model organism databases (MODs) for capturing gene function data from journal articles. It is a time-consuming and labor-intensive task, and is thus often considered as one of the bottlenecks in literature curation. There is a growing need for semiautomated or fully automated GO curation techniques that will help database curators to rapidly and accurately identify gene function information in full-length articles. Despite multiple attempts in the past, few studies have proven to be useful with regard to assisting real-world GO curation. The shortage of sentence-level training data and opportunities for interaction between text-mining developers and GO curators has limited the advances in algorithm development and corresponding use in practical circumstances. To this end, we organized a text-mining challenge task for literature-based GO annotation in BioCreative IV. More specifically, we developed two subtasks: (i) to automatically locate text passages that contain GO-relevant information (a text retrieval task) and (ii) to automatically identify relevant GO terms for the genes in a given article (a concept-recognition task). With the support from five MODs, we provided teams with >4000 unique text passages that served as the basis for each GO annotation in our task data. Such evidence text information has long been recognized as critical for text-mining algorithm development but was never made available because of the high cost of curation. In total, seven teams participated in the challenge task. From the team results, we conclude that the state of the art in automatically mining GO terms from literature has improved over the past decade while much progress is still needed for computer-assisted GO curation. Future work should focus on addressing remaining technical challenges for improved performance of automatic GO concept recognition and incorporating practical benefits of text-mining tools into real-world GO annotation. http://www.biocreative.org/tasks/biocreative-iv/track-4-GO/. Published by Oxford University Press 2014. This work is written by US Government employees and is in the public domain in the US. |
25070993 |
BC4GO: a full-text corpus for the BioCreative IV GO task. [PMID: 25070993]
Van Auken K, Schaeffer ML, McQuilton P, Laulederkind SJ, Li D, Wang SJ, Hayman GT, Tweedie S, Arighi CN, Done J, Müller HM, Sternberg PW, Mao Y, Wei CH, Lu Z.
Gene function curation via Gene Ontology (GO) annotation is a common task among Model Organism Database groups. Owing to its manual nature, this task is considered one of the bottlenecks in literature curation. There have been many previous attempts at automatic identification of GO terms and supporting information from full text. However, few systems have delivered an accuracy that is comparable with humans. One recognized challenge in developing such systems is the lack of marked sentence-level evidence text that provides the basis for making GO annotations. We aim to create a corpus that includes the GO evidence text along with the three core elements of GO annotations: (i) a gene or gene product, (ii) a GO term and (iii) a GO evidence code. To ensure our results are consistent with real-life GO data, we recruited eight professional GO curators and asked them to follow their routine GO annotation protocols. Our annotators marked up more than 5000 text passages in 200 articles for 1356 distinct GO terms. For evidence sentence selection, the inter-annotator agreement (IAA) results are 9.3% (strict) and 42.7% (relaxed) in F1-measures. For GO term selection, the IAAs are 47% (strict) and 62.9% (hierarchical). Our corpus analysis further shows that abstracts contain ? 10% of relevant evidence sentences and 30% distinct GO terms, while the Results/Experiment section has nearly 60% relevant sentences and >70% GO terms. Further, of those evidence sentences found in abstracts, less than one-third contain enough experimental detail to fulfill the three core criteria of a GO annotation. This result demonstrates the need of using full-text articles for text mining GO annotations. Through its use at the BioCreative IV GO (BC4GO) task, we expect our corpus to become a valuable resource for the BioNLP research community. Database URL: http://www.biocreative.org/resources/corpora/bc-iv-go-task-corpus/. Published by Oxford University Press 2014. This work is written by US Government employees and is in the public domain in the US. |
24852177 |
BioCreative-IV virtual issue. [PMID: 24852177]
Arighi CN, Wu CH, Cohen KB, Hirschman L, Krallinger M, Valencia A, Lu Z, Wilbur JW, Wiegers TC.
Database (Oxford). 2014:2014()
| 22 Citations (from Europe
PMC, 2025-03-29)
|
23327936 |
An overview of the BioCreative 2012 Workshop Track III: interactive text mining task. [PMID: 23327936]
Arighi CN, Carterette B, Cohen KB, Krallinger M, Wilbur WJ, Fey P, Dodson R, Cooper L, Van Slyke CE, Dahdul W, Mabee P, Li D, Harris B, Gillespie M, Jimenez S, Roberts P, Matthews L, Becker K, Drabkin H, Bello S, Licata L, Chatr-aryamontri A, Schaeffer ML, Park J, Haendel M, Van Auken K, Li Y, Chan J, Muller HM, Cui H, Balhoff JP, Chi-Yang Wu J, Lu Z, Wei CH, Tudor CO, Raja K, Subramani S, Natarajan J, Cejuela JM, Dubey P, Wu C.
In many databases, biocuration primarily involves literature curation, which usually involves retrieving relevant articles, extracting information that will translate into annotations and identifying new incoming literature. As the volume of biological literature increases, the use of text mining to assist in biocuration becomes increasingly relevant. A number of groups have developed tools for text mining from a computer science/linguistics perspective, and there are many initiatives to curate some aspect of biology from the literature. Some biocuration efforts already make use of a text mining tool, but there have not been many broad-based systematic efforts to study which aspects of a text mining tool contribute to its usefulness for a curation task. Here, we report on an effort to bring together text mining tool developers and database biocurators to test the utility and usability of tools. Six text mining systems presenting diverse biocuration tasks participated in a formal evaluation, and appropriate biocurators were recruited for testing. The performance results from this evaluation indicate that some of the systems were able to improve efficiency of curation by speeding up the curation task significantly (?1.7- to 2.5-fold) over manual curation. In addition, some of the systems were able to improve annotation accuracy when compared with the performance on the manually curated set. In terms of inter-annotator agreement, the factors that contributed to significant differences for some of the systems included the expertise of the biocurator on the given curation task, the inherent difficulty of the curation and attention to annotation guidelines. After the task, annotators were asked to complete a survey to help identify strengths and weaknesses of the various systems. The analysis of this survey highlights how important task completion is to the biocurators' overall experience of a system, regardless of the system's high score on design, learnability and usability. In addition, strategies to refine the annotation guidelines and systems documentation, to adapt the tools to the needs and query types the end user might have and to evaluate performance in terms of efficiency, user interface, result export and traditional evaluation metrics have been analyzed during this task. This analysis will help to plan for a more intense study in BioCreative IV. |
23221175 |
BioCreative-2012 virtual issue. [PMID: 23221175]
Wu CH, Arighi CN, Cohen KB, Hirschman L, Krallinger M, Lu Z, Mattingly C, Valencia A, Wiegers TC, John Wilbur W.
Database (Oxford). 2012:2012()
| 11 Citations (from Europe
PMC, 2025-03-29)
|
22151968 |
BioCreative III interactive task: an overview. [PMID: 22151968]
Arighi CN, Roberts PM, Agarwal S, Bhattacharya S, Cesareni G, Chatr-Aryamontri A, Clematide S, Gaudet P, Giglio MG, Harrow I, Huala E, Krallinger M, Leser U, Li D, Liu F, Lu Z, Maltais LJ, Okazaki N, Perfetto L, Rinaldi F, Sætre R, Salgado D, Srinivasan P, Thomas PE, Toldo L, Hirschman L, Wu CH.
The BioCreative challenge evaluation is a community-wide effort for evaluating text mining and information extraction systems applied to the biological domain. The biocurator community, as an active user of biomedical literature, provides a diverse and engaged end user group for text mining tools. Earlier BioCreative challenges involved many text mining teams in developing basic capabilities relevant to biological curation, but they did not address the issues of system usage, insertion into the workflow and adoption by curators. Thus in BioCreative III (BC-III), the InterActive Task (IAT) was introduced to address the utility and usability of text mining tools for real-life biocuration tasks. To support the aims of the IAT in BC-III, involvement of both developers and end users was solicited, and the development of a user interface to address the tasks interactively was requested. A User Advisory Group (UAG) actively participated in the IAT design and assessment. The task focused on gene normalization (identifying gene mentions in the article and linking these genes to standard database identifiers), gene ranking based on the overall importance of each gene mentioned in the article, and gene-oriented document retrieval (identifying full text papers relevant to a selected gene). Six systems participated and all processed and displayed the same set of articles. The articles were selected based on content known to be problematic for curation, such as ambiguity of gene names, coverage of multiple genes and species, or introduction of a new gene name. Members of the UAG curated three articles for training and assessment purposes, and each member was assigned a system to review. A questionnaire related to the interface usability and task performance (as measured by precision and recall) was answered after systems were used to curate articles. Although the limited number of articles analyzed and users involved in the IAT experiment precluded rigorous quantitative analysis of the results, a qualitative analysis provided valuable insight into some of the problems encountered by users when using the systems. The overall assessment indicates that the system usability features appealed to most users, but the system performance was suboptimal (mainly due to low accuracy in gene normalization). Some of the issues included failure of species identification and gene name ambiguity in the gene normalization task leading to an extensive list of gene identifiers to review, which, in some cases, did not contain the relevant genes. The document retrieval suffered from the same shortfalls. The UAG favored achieving high performance (measured by precision and recall), but strongly recommended the addition of features that facilitate the identification of correct gene and its identifier, such as contextual information to assist in disambiguation. The IAT was an informative exercise that advanced the dialog between curators and developers and increased the appreciation of challenges faced by each group. A major conclusion was that the intended users should be actively involved in every phase of software development, and this will be strongly encouraged in future tasks. The IAT Task provides the first steps toward the definition of metrics and functional requirements that are necessary for designing a formal evaluation of interactive curation systems in the BioCreative IV challenge. |
22151929 |
The Protein-Protein Interaction tasks of BioCreative III: classification/ranking of articles and linking bio-ontology concepts to full text. [PMID: 22151929]
Krallinger M, Vazquez M, Leitner F, Salgado D, Chatr-Aryamontri A, Winter A, Perfetto L, Briganti L, Licata L, Iannuccelli M, Castagnoli L, Cesareni G, Tyers M, Schneider G, Rinaldi F, Leaman R, Gonzalez G, Matos S, Kim S, Wilbur WJ, Rocha L, Shatkay H, Tendulkar AV, Agarwal S, Liu F, Wang X, Rak R, Noto K, Elkan C, Lu Z, Dogan RI, Fontaine JF, Andrade-Navarro MA, Valencia A.
Determining usefulness of biomedical text mining systems requires realistic task definition and data selection criteria without artificial constraints, measuring performance aspects that go beyond traditional metrics. The BioCreative III Protein-Protein Interaction (PPI) tasks were motivated by such considerations, trying to address aspects including how the end user would oversee the generated output, for instance by providing ranked results, textual evidence for human interpretation or measuring time savings by using automated systems. Detecting articles describing complex biological events like PPIs was addressed in the Article Classification Task (ACT), where participants were asked to implement tools for detecting PPI-describing abstracts. Therefore the BCIII-ACT corpus was provided, which includes a training, development and test set of over 12,000 PPI relevant and non-relevant PubMed abstracts labeled manually by domain experts and recording also the human classification times. The Interaction Method Task (IMT) went beyond abstracts and required mining for associations between more than 3,500 full text articles and interaction detection method ontology concepts that had been applied to detect the PPIs reported in them. A total of 11 teams participated in at least one of the two PPI tasks (10 in ACT and 8 in the IMT) and a total of 62 persons were involved either as participants or in preparing data sets/evaluating these tasks. Per task, each team was allowed to submit five runs offline and another five online via the BioCreative Meta-Server. From the 52 runs submitted for the ACT, the highest Matthew's Correlation Coefficient (MCC) score measured was 0.55 at an accuracy of 89% and the best AUC iP/R was 68%. Most ACT teams explored machine learning methods, some of them also used lexical resources like MeSH terms, PSI-MI concepts or particular lists of verbs and nouns, some integrated NER approaches. For the IMT, a total of 42 runs were evaluated by comparing systems against manually generated annotations done by curators from the BioGRID and MINT databases. The highest AUC iP/R achieved by any run was 53%, the best MCC score 0.55. In case of competitive systems with an acceptable recall (above 35%) the macro-averaged precision ranged between 50% and 80%, with a maximum F-Score of 55%. The results of the ACT task of BioCreative III indicate that classification of large unbalanced article collections reflecting the real class imbalance is still challenging. Nevertheless, text-mining tools that report ranked lists of relevant articles for manual selection can potentially reduce the time needed to identify half of the relevant articles to less than 1/4 of the time when compared to unranked results. Detecting associations between full text articles and interaction detection method PSI-MI terms (IMT) is more difficult than might be anticipated. This is due to the variability of method term mentions, errors resulting from pre-processing of articles provided as PDF files, and the heterogeneity and different granularity of method term concepts encountered in the ontology. However, combining the sophisticated techniques developed by the participants with supporting evidence strings derived from the articles for human interpretation could result in practical modules for biological annotation workflows. |
22151901 |
The gene normalization task in BioCreative III. [PMID: 22151901]
Lu Z, Kao HY, Wei CH, Huang M, Liu J, Kuo CJ, Hsu CN, Tsai RT, Dai HJ, Okazaki N, Cho HC, Gerner M, Solt I, Agarwal S, Liu F, Vishnyakova D, Ruch P, Romacker M, Rinaldi F, Bhattacharya S, Srinivasan P, Liu H, Torii M, Matos S, Campos D, Verspoor K, Livingston KM, Wilbur WJ.
We report the Gene Normalization (GN) challenge in BioCreative III where participating teams were asked to return a ranked list of identifiers of the genes detected in full-text articles. For training, 32 fully and 500 partially annotated articles were prepared. A total of 507 articles were selected as the test set. Due to the high annotation cost, it was not feasible to obtain gold-standard human annotations for all test articles. Instead, we developed an Expectation Maximization (EM) algorithm approach for choosing a small number of test articles for manual annotation that were most capable of differentiating team performance. Moreover, the same algorithm was subsequently used for inferring ground truth based solely on team submissions. We report team performance on both gold standard and inferred ground truth using a newly proposed metric called Threshold Average Precision (TAP-k). We received a total of 37 runs from 14 different teams for the task. When evaluated using the gold-standard annotations of the 50 articles, the highest TAP-k scores were 0.3297 (k=5), 0.3538 (k=10), and 0.3535 (k=20), respectively. Higher TAP-k scores of 0.4916 (k=5, 10, 20) were observed when evaluated using the inferred ground truth over the full test set. When combining team results using machine learning, the best composite system achieved TAP-k scores of 0.3707 (k=5), 0.4311 (k=10), and 0.4477 (k=20) on the gold standard, representing improvements of 12.4%, 21.8%, and 26.6% over the best team results, respectively. By using full text and being species non-specific, the GN task in BioCreative III has moved closer to a real literature curation task than similar tasks in the past and presents additional challenges for the text mining community, as revealed in the overall team results. By evaluating teams using the gold standard, we show that the EM algorithm allows team submissions to be differentiated while keeping the manual annotation effort feasible. Using the inferred ground truth we show measures of comparative performance between teams. Finally, by comparing team rankings on gold standard vs. inferred ground truth, we further demonstrate that the inferred ground truth is as effective as the gold standard for detecting good team performance. |
22151647 |
Overview of the BioCreative III Workshop. [PMID: 22151647]
Arighi CN, Lu Z, Krallinger M, Cohen KB, Wilbur WJ, Valencia A, Hirschman L, Wu CH.
The overall goal of the BioCreative Workshops is to promote the development of text mining and text processing tools which are useful to the communities of researchers and database curators in the biological sciences. To this end BioCreative I was held in 2004, BioCreative II in 2007, and BioCreative II.5 in 2009. Each of these workshops involved humanly annotated test data for several basic tasks in text mining applied to the biomedical literature. Participants in the workshops were invited to compete in the tasks by constructing software systems to perform the tasks automatically and were given scores based on their performance. The results of these workshops have benefited the community in several ways. They have 1) provided evidence for the most effective methods currently available to solve specific problems; 2) revealed the current state of the art for performance on those problems; 3) and provided gold standard data and results on that data by which future advances can be gauged. This special issue contains overview papers for the three tasks of BioCreative III. The BioCreative III Workshop was held in September of 2010 and continued the tradition of a challenge evaluation on several tasks judged basic to effective text mining in biology, including a gene normalization (GN) task and two protein-protein interaction (PPI) tasks. In total the Workshop involved the work of twenty-three teams. Thirteen teams participated in the GN task which required the assignment of EntrezGene IDs to all named genes in full text papers without any species information being provided to a system. Ten teams participated in the PPI article classification task (ACT) requiring a system to classify and rank a PubMed® record as belonging to an article either having or not having "PPI relevant" information. Eight teams participated in the PPI interaction method task (IMT) where systems were given full text documents and were required to extract the experimental methods used to establish PPIs and a text segment supporting each such method. Gold standard data was compiled for each of these tasks and participants competed in developing systems to perform the tasks automatically.BioCreative III also introduced a new interactive task (IAT), run as a demonstration task. The goal was to develop an interactive system to facilitate a user's annotation of the unique database identifiers for all the genes appearing in an article. This task included ranking genes by importance (based preferably on the amount of described experimental information regarding genes). There was also an optional task to assist the user in finding the most relevant articles about a given gene. For BioCreative III, a user advisory group (UAG) was assembled and played an important role 1) in producing some of the gold standard annotations for the GN task, 2) in critiquing IAT systems, and 3) in providing guidance for a future more rigorous evaluation of IAT systems. Six teams participated in the IAT demonstration task and received feedback on their systems from the UAG group. Besides innovations in the GN and PPI tasks making them more realistic and practical and the introduction of the IAT task, discussions were begun on community data standards to promote interoperability and on user requirements and evaluation metrics to address utility and usability of systems. In this paper we give a brief history of the BioCreative Workshops and how they relate to other text mining competitions in biology. This is followed by a synopsis of the three tasks GN, PPI, and IAT in BioCreative III with figures for best participant performance on the GN and PPI tasks. These results are discussed and compared with results from previous BioCreative Workshops and we conclude that the best performing systems for GN, PPI-ACT and PPI-IMT in realistic settings are not sufficient for fully automatic use. This provides evidence for the importance of interactive systems and we present our vision of how best to construct an interactive system for a GN or PPI like task in the remainder of the paper. |
22151178 |
Benchmarking of the 2010 BioCreative Challenge III text-mining competition by the BioGRID and MINT interaction databases. [PMID: 22151178]
Chatr-Aryamontri A, Winter A, Perfetto L, Briganti L, Licata L, Iannuccelli M, Castagnoli L, Cesareni G, Tyers M.
The vast amount of data published in the primary biomedical literature represents a challenge for the automated extraction and codification of individual data elements. Biological databases that rely solely on manual extraction by expert curators are unable to comprehensively annotate the information dispersed across the entire biomedical literature. The development of efficient tools based on natural language processing (NLP) systems is essential for the selection of relevant publications, identification of data attributes and partially automated annotation. One of the tasks of the Biocreative 2010 Challenge III was devoted to the evaluation of NLP systems developed to identify articles for curation and extraction of protein-protein interaction (PPI) data. The Biocreative 2010 competition addressed three tasks: gene normalization, article classification and interaction method identification. The BioGRID and MINT protein interaction databases both participated in the generation of the test publication set for gene normalization, annotated the development and test sets for article classification, and curated the test set for interaction method classification. These test datasets served as a gold standard for the evaluation of data extraction algorithms. The development of efficient tools for extraction of PPI data is a necessary step to achieve full curation of the biomedical literature. NLP systems can in the first instance facilitate expert curation by refining the list of candidate publications that contain PPI data; more ambitiously, NLP approaches may be able to directly extract relevant information from full-text articles for rapid inspection by expert curators. Close collaboration between biological databases and NLP systems developers will continue to facilitate the long-term objectives of both disciplines. |
20829821 |
The FEBS Letters/BioCreative II.5 experiment: making biological information accessible. [PMID: 20829821]
Leitner F, Chatr-aryamontri A, Mardis SA, Ceol A, Krallinger M, Licata L, Hirschman L, Cesareni G, Valencia A.
Nat Biotechnol. 2010:28(9)
| 26 Citations (from Europe
PMC, 2025-03-29)
|
20704011 |
An Overview of BioCreative II.5. [PMID: 20704011]
Leitner F, Mardis SA, Krallinger M, Cesareni G, Hirschman LA, Valencia A.
We present the results of the BioCreative II.5 evaluation in association with the FEBS Letters experiment, where authors created Structured Digital Abstracts to capture information about protein-protein interactions. The BioCreative II.5 challenge evaluated automatic annotations from 15 text mining teams based on a gold standard created by reconciling annotations from curators, authors, and automated systems. The tasks were to rank articles for curation based on curatable protein-protein interactions; to identify the interacting proteins (using UniProt identifiers) in the positive articles (61); and to identify interacting protein pairs. There were 595 full-text articles in the evaluation test set, including those both with and without curatable protein interactions. The principal evaluation metrics were the interpolated area under the precision/recall curve (AUC iP/R), and (balanced) F-measure. For article classification, the best AUC iP/R was 0.70; for interacting proteins, the best system achieved good macroaveraged recall (0.73) and interpolated area under the precision/recall curve (0.58), after filtering incorrect species and mapping homonymous orthologs; for interacting protein pairs, the top (filtered, mapped) recall was 0.42 and AUC iP/R was 0.29. Ensemble systems improved performance for the interacting protein task. |
20671319 |
OntoGene in BioCreative II.5. [PMID: 20671319]
Rinaldi F, Schneider G, Kaljurand K, Clematide S, Vachon T, Romacker M.
We describe a system for the detection of mentions of protein-protein interactions in the biomedical scientific literature. The original system was developed as a part of the OntoGene project, which focuses on using advanced computational linguistic techniques for text mining applications in the biomedical domain. In this paper, we focus in particular on the participation to the BioCreative II.5 challenge, where the OntoGene system achieved best-ranked results. Additionally, we describe a feature-analysis experiment performed after the challenge, which shows the unexpected result that one single feature alone performs better than the combination of features used in the challenge. |
18834495 |
Overview of the protein-protein interaction annotation extraction task of BioCreative II. [PMID: 18834495]
Krallinger M, Leitner F, Rodriguez-Penagos C, Valencia A.
The biomedical literature is the primary information source for manual protein-protein interaction annotations. Text-mining systems have been implemented to extract binary protein interactions from articles, but a comprehensive comparison between the different techniques as well as with manual curation was missing. We designed a community challenge, the BioCreative II protein-protein interaction (PPI) task, based on the main steps of a manual protein interaction annotation workflow. It was structured into four distinct subtasks related to: (a) detection of protein interaction-relevant articles; (b) extraction and normalization of protein interaction pairs; (c) retrieval of the interaction detection methods used; and (d) retrieval of actual text passages that provide evidence for protein interactions. A total of 26 teams submitted runs for at least one of the proposed subtasks. In the interaction article detection subtask, the top scoring team reached an F-score of 0.78. In the interaction pair extraction and mapping to SwissProt, a precision of 0.37 (with recall of 0.33) was obtained. For associating articles with an experimental interaction detection method, an F-score of 0.65 was achieved. As for the retrieval of the PPI passages best summarizing a given protein interaction in full-text articles, 19% of the submissions returned by one of the runs corresponded to curator-selected sentences. Curators extracted only the passages that best summarized a given interaction, implying that many of the automatically extracted ones could contain interaction information but did not correspond to the most informative sentences. The BioCreative II PPI task is the first attempt to compare the performance of text-mining tools specific for each of the basic steps of the PPI extraction pipeline. The challenges identified range from problems in full-text format conversion of articles to difficulties in detecting interactor protein pairs and then linking them to their database records. Some limitations were also encountered when using a single (and possibly incomplete) reference database for protein normalization or when limiting search for interactor proteins to co-occurrence within a single sentence, when a mention might span neighboring sentences. Finally, distinguishing between novel, experimentally verified interactions (annotation relevant) and previously known interactions adds additional complexity to these tasks. |
18834494 |
Overview of BioCreative II gene normalization. [PMID: 18834494]
Morgan AA, Lu Z, Wang X, Cohen AM, Fluck J, Ruch P, Divoli A, Fundel K, Leaman R, Hakenberg J, Sun C, Liu HH, Torres R, Krauthammer M, Lau WW, Liu H, Hsu CN, Schuemie M, Cohen KB, Hirschman L.
The goal of the gene normalization task is to link genes or gene products mentioned in the literature to biological databases. This is a key step in an accurate search of the biological literature. It is a challenging task, even for the human expert; genes are often described rather than referred to by gene symbol and, confusingly, one gene name may refer to different genes (often from different organisms). For BioCreative II, the task was to list the Entrez Gene identifiers for human genes or gene products mentioned in PubMed/MEDLINE abstracts. We selected abstracts associated with articles previously curated for human genes. We provided 281 expert-annotated abstracts containing 684 gene identifiers for training, and a blind test set of 262 documents containing 785 identifiers, with a gold standard created by expert annotators. Inter-annotator agreement was measured at over 90%. Twenty groups submitted one to three runs each, for a total of 54 runs. Three systems achieved F-measures (balanced precision and recall) between 0.80 and 0.81. Combining the system outputs using simple voting schemes and classifiers obtained improved results; the best composite system achieved an F-measure of 0.92 with 10-fold cross-validation. A 'maximum recall' system based on the pooled responses of all participants gave a recall of 0.97 (with precision 0.23), identifying 763 out of 785 identifiers. Major advances for the BioCreative II gene normalization task include broader participation (20 versus 8 teams) and a pooled system performance comparable to human experts, at over 90% agreement. These results show promise as tools to link the literature with biological databases. |
18834493 |
Overview of BioCreative II gene mention recognition. [PMID: 18834493]
Smith L, Tanabe LK, Ando RJ, Kuo CJ, Chung IF, Hsu CN, Lin YS, Klinger R, Friedrich CM, Ganchev K, Torii M, Liu H, Haddow B, Struble CA, Povinelli RJ, Vlachos A, Baumgartner WA, Hunter L, Carpenter B, Tsai RT, Dai HJ, Liu F, Chen Y, Sun C, Katrenko S, Adriaans P, Blaschke C, Torres R, Neves M, Nakov P, Divoli A, Maña-López M, Mata J, Wilbur WJ.
Nineteen teams presented results for the Gene Mention Task at the BioCreative II Workshop. In this task participants designed systems to identify substrings in sentences corresponding to gene name mentions. A variety of different methods were used and the results varied with a highest achieved F1 score of 0.8721. Here we present brief descriptions of all the methods used and a statistical analysis of the results. We also demonstrate that, by combining the results from all submissions, an F score of 0.9066 is feasible, and furthermore that the best result makes use of the lowest scoring submissions. |
18834491 |
OntoGene in BioCreative II. [PMID: 18834491]
Rinaldi F, Kappeler T, Kaljurand K, Schneider G, Klenner M, Clematide S, Hess M, von Allmen JM, Parisot P, Romacker M, Vachon T.
Research scientists and companies working in the domains of biomedicine and genomics are increasingly faced with the problem of efficiently locating, within the vast body of published scientific findings, the critical pieces of information that are needed to direct current and future research investment. In this report we describe approaches taken within the scope of the second BioCreative competition in order to solve two aspects of this problem: detection of novel protein interactions reported in scientific articles, and detection of the experimental method that was used to confirm the interaction. Our approach to the former problem is based on a high-recall protein annotation step, followed by two strict disambiguation steps. The remaining proteins are then combined according to a number of lexico-syntactic filters, which deliver high-precision results while maintaining reasonable recall. The detection of the experimental methods is tackled by a pattern matching approach, which has delivered the best results in the official BioCreative evaluation. Although the results of BioCreative clearly show that no tool is sufficiently reliable for fully automated annotations, a few of the proposed approaches (including our own) already perform at a competitive level. This makes them interesting either as standalone tools for preliminary document inspection, or as modules within an environment aimed at supporting the process of curation of biomedical literature. |
15960838 |
BioCreAtIvE task1A: entity identification with a stochastic tagger. [PMID: 15960838]
Kinoshita S, Cohen KB, Ogren PV, Hunter L.
Our approach to Task 1A was inspired by Tanabe and Wilbur's ABGene system. Like Tanabe and Wilbur, we approached the problem as one of part-of-speech tagging, adding a GENE tag to the standard tag set. Where their system uses the Brill tagger, we used TnT, the Trigrams 'n' Tags HMM-based part-of-speech tagger. Based on careful error analysis, we implemented a set of post-processing rules to correct both false positives and false negatives. We participated in both the open and the closed divisions; for the open division, we made use of data from NCBI. Our base system without post-processing achieved a precision and recall of 68.0% and 77.2%, respectively, giving an F-measure of 72.3%. The full system with post-processing achieved a precision and recall of 80.3% and 80.5% giving an F-measure of 80.4%. We achieved a slight improvement (F-measure = 80.9%) by employing a dictionary-based post-processing step for the open division. We placed third in both the open and the closed division. Our results show that a part-of-speech tagger can be augmented with post-processing rules resulting in an entity identification system that competes well with other approaches. |
15960832 |
BioCreAtIvE task 1A: gene mention finding evaluation. [PMID: 15960832]
Yeh A, Morgan A, Colosimo M, Hirschman L.
The biological research literature is a major repository of knowledge. As the amount of literature increases, it will get harder to find the information of interest on a particular topic. There has been an increasing amount of work on text mining this literature, but comparing this work is hard because of a lack of standards for making comparisons. To address this, we worked with colleagues at the Protein Design Group, CNB-CSIC, Madrid to develop BioCreAtIvE (Critical Assessment for Information Extraction in Biology), an open common evaluation of systems on a number of biological text mining tasks. We report here on task 1A, which deals with finding mentions of genes and related entities in text. "Finding mentions" is a basic task, which can be used as a building block for other text mining tasks. The task makes use of data and evaluation software provided by the (US) National Center for Biotechnology Information (NCBI). 15 teams took part in task 1A. A number of teams achieved scores over 80% F-measure (balanced precision and recall). The teams that tried to use their task 1A systems to help on other BioCreAtIvE tasks reported mixed results. The 80% plus F-measure results are good, but still somewhat lag the best scores achieved in some other domains such as newswire, due in part to the complexity and length of gene names, compared to person or organization names in newswire. |
15960829 |
An evaluation of GO annotation retrieval for BioCreAtIvE and GOA. [PMID: 15960829]
Camon EB, Barrell DG, Dimmer EC, Lee V, Magrane M, Maslen J, Binns D, Apweiler R.
The Gene Ontology Annotation (GOA) database http://www.ebi.ac.uk/GOA aims to provide high-quality supplementary GO annotation to proteins in the UniProt Knowledgebase. Like many other biological databases, GOA gathers much of its content from the careful manual curation of literature. However, as both the volume of literature and of proteins requiring characterization increases, the manual processing capability can become overloaded. Consequently, semi-automated aids are often employed to expedite the curation process. Traditionally, electronic techniques in GOA depend largely on exploiting the knowledge in existing resources such as InterPro. However, in recent years, text mining has been hailed as a potentially useful tool to aid the curation process. To encourage the development of such tools, the GOA team at EBI agreed to take part in the functional annotation task of the BioCreAtIvE (Critical Assessment of Information Extraction systems in Biology) challenge. BioCreAtIvE task 2 was an experiment to test if automatically derived classification using information retrieval and extraction could assist expert biologists in the annotation of the GO vocabulary to the proteins in the UniProt Knowledgebase. GOA provided the training corpus of over 9000 manual GO annotations extracted from the literature. For the test set, we provided a corpus of 200 new Journal of Biological Chemistry articles used to annotate 286 human proteins with GO terms. A team of experts manually evaluated the results of 9 participating groups, each of which provided highlighted sentences to support their GO and protein annotation predictions. Here, we give a biological perspective on the evaluation, explain how we annotate GO using literature and offer some suggestions to improve the precision of future text-retrieval and extraction techniques. Finally, we provide the results of the first inter-annotator agreement study for manual GO curation, as well as an assessment of our current electronic GO annotation strategies. The GOA database currently extracts GO annotation from the literature with 91 to 100% precision, and at least 72% recall. This creates a particularly high threshold for text mining systems which in BioCreAtIvE task 2 (GO annotation extraction and retrieval) initial results precisely predicted GO terms only 10 to 20% of the time. Improvements in the performance and accuracy of text mining for GO terms should be expected in the next BioCreAtIvE challenge. In the meantime the manual and electronic GO annotation strategies already employed by GOA will provide high quality annotations. |
15960828 |
Evaluation of BioCreAtIvE assessment of task 2. [PMID: 15960828]
Blaschke C, Leon EA, Krallinger M, Valencia A.
Molecular Biology accumulated substantial amounts of data concerning functions of genes and proteins. Information relating to functional descriptions is generally extracted manually from textual data and stored in biological databases to build up annotations for large collections of gene products. Those annotation databases are crucial for the interpretation of large scale analysis approaches using bioinformatics or experimental techniques. Due to the growing accumulation of functional descriptions in biomedical literature the need for text mining tools to facilitate the extraction of such annotations is urgent. In order to make text mining tools useable in real world scenarios, for instance to assist database curators during annotation of protein function, comparisons and evaluations of different approaches on full text articles are needed. The Critical Assessment for Information Extraction in Biology (BioCreAtIvE) contest consists of a community wide competition aiming to evaluate different strategies for text mining tools, as applied to biomedical literature. We report on task two which addressed the automatic extraction and assignment of Gene Ontology (GO) annotations of human proteins, using full text articles. The predictions of task 2 are based on triplets of protein--GO term--article passage. The annotation-relevant text passages were returned by the participants and evaluated by expert curators of the GO annotation (GOA) team at the European Institute of Bioinformatics (EBI). Each participant could submit up to three results for each sub-task comprising task 2. In total more than 15,000 individual results were provided by the participants. The curators evaluated in addition to the annotation itself, whether the protein and the GO term were correctly predicted and traceable through the submitted text fragment. Concepts provided by GO are currently the most extended set of terms used for annotating gene products, thus they were explored to assess how effectively text mining tools are able to extract those annotations automatically. Although the obtained results are promising, they are still far from reaching the required performance demanded by real world applications. Among the principal difficulties encountered to address the proposed task, were the complex nature of the GO terms and protein names (the large range of variants which are used to express proteins and especially GO terms in free text), and the lack of a standard training set. A range of very different strategies were used to tackle this task. The dataset generated in line with the BioCreative challenge is publicly available and will allow new possibilities for training information extraction methods in the domain of molecular biology. |
15960824 |
Data preparation and interannotator agreement: BioCreAtIvE task 1B. [PMID: 15960824]
Colosimo ME, Morgan AA, Yeh AS, Colombe JB, Hirschman L.
We prepared and evaluated training and test materials for an assessment of text mining methods in molecular biology. The goal of the assessment was to evaluate the ability of automated systems to generate a list of unique gene identifiers from PubMed abstracts for the three model organisms Fly, Mouse, and Yeast. This paper describes the preparation and evaluation of answer keys for training and testing. These consisted of lists of normalized gene names found in the abstracts, generated by adapting the gene list for the full journal articles found in the model organism databases. For the training dataset, the gene list was pruned automatically to remove gene names not found in the abstract; for the testing dataset, it was further refined by manual annotation by annotators provided with guidelines. A critical step in interpreting the results of an assessment is to evaluate the quality of the data preparation. We did this by careful assessment of interannotator agreement and the use of answer pooling of participant results to improve the quality of the final testing dataset. Interannotator analysis on a small dataset showed that our gene lists for Fly and Yeast were good (87% and 91% three-way agreement) but the Mouse gene list had many conflicts (mostly omissions), which resulted in errors (69% interannotator agreement). By comparing and pooling answers from the participant systems, we were able to add an additional check on the test data; this allowed us to find additional errors, especially in Mouse. This led to 1% change in the Yeast and Fly "gold standard" answer keys, but to an 8% change in the mouse answer key. We found that clear annotation guidelines are important, along with careful interannotator experiments, to validate the generated gene lists. Also, abstracts alone are a poor resource for identifying genes in paper, containing only a fraction of genes mentioned in the full text (25% for Fly, 36% for Mouse). We found that there are intrinsic differences between the model organism databases related to the number of synonymous terms and also to curation criteria. Finally, we found that answer pooling was much faster and allowed us to identify more conflicting genes than interannotator analysis. |
15960823 |
Overview of BioCreAtIvE task 1B: normalized gene lists. [PMID: 15960823]
Hirschman L, Colosimo M, Morgan A, Yeh A.
Our goal in BioCreAtIve has been to assess the state of the art in text mining, with emphasis on applications that reflect real biological applications, e.g., the curation process for model organism databases. This paper summarizes the BioCreAtIvE task 1B, the "Normalized Gene List" task, which was inspired by the gene list supplied for each curated paper in a model organism database. The task was to produce the correct list of unique gene identifiers for the genes and gene products mentioned in sets of abstracts from three model organisms (Yeast, Fly, and Mouse). Eight groups fielded systems for three data sets (Yeast, Fly, and Mouse). For Yeast, the top scoring system (out of 15) achieved 0.92 F-measure (harmonic mean of precision and recall); for Mouse and Fly, the task was more difficult, due to larger numbers of genes, more ambiguity in the gene naming conventions (particularly for Fly), and complex gene names (for Mouse). For Fly, the top F-measure was 0.82 out of 11 systems and for Mouse, it was 0.79 out of 16 systems. This assessment demonstrates that multiple groups were able to perform a real biological task across a range of organisms. The performance was dependent on the organism, and specifically on the naming conventions associated with each organism. These results hold out promise that the technology can provide partial automation of the curation process in the near future. |
15960821 |
Overview of BioCreAtIvE: critical assessment of information extraction for biology. [PMID: 15960821]
Hirschman L, Yeh A, Blaschke C, Valencia A.
The goal of the first BioCreAtIvE challenge (Critical Assessment of Information Extraction in Biology) was to provide a set of common evaluation tasks to assess the state of the art for text mining applied to biological problems. The results were presented in a workshop held in Granada, Spain March 28-31, 2004. The articles collected in this BMC Bioinformatics supplement entitled "A critical assessment of text mining methods in molecular biology" describe the BioCreAtIvE tasks, systems, results and their independent evaluation. BioCreAtIvE focused on two tasks. The first dealt with extraction of gene or protein names from text, and their mapping into standardized gene identifiers for three model organism databases (fly, mouse, yeast). The second task addressed issues of functional annotation, requiring systems to identify specific text passages that supported Gene Ontology annotations for specific proteins, given full text articles. The first BioCreAtIvE assessment achieved a high level of international participation (27 groups from 10 countries). The assessment provided state-of-the-art performance results for a basic task (gene name finding and normalization), where the best systems achieved a balanced 80% precision / recall or better, which potentially makes them suitable for real applications in biology. The results for the advanced task (functional annotation from free text) were significantly lower, demonstrating the current limitations of text-mining approaches where knowledge extrapolation and interpretation are required. In addition, an important contribution of BioCreAtIvE has been the creation and release of training and test data sets for both tasks. There are 22 articles in this special issue, including six that provide analyses of results or data quality for the data sets, including a novel inter-annotator consistency assessment for the test set used in task 2. |
Loading... |
Loading... |