Summary: In its more severe forms, COVID-19 progresses towards an excessive immune response, leading to the systemic overexpression of proinflammatory cytokines like IL6, mostly from the infected lungs. This cytokine storm can cause multiple organ damage and death. Consequently, there is a pressing need to identify therapies to treat and prevent severe symptoms during COVID-19. Based on previous clinical evidence, we hypothesized that inhibiting T cell co-stimulation by blocking CD80/86 could be an effective therapeutic strategy against progression to severe proinflammatory states. To support this hypothesis, we performed an analysis integrating blood transcriptional data we generated from rheumatoid arthritis patients treated with abatacept -a CD80/86 costimulation inhibitor- with the pathological features associated with COVID-19, particularly in its more severe forms. We have found that many of the biological processes that have been consistently associated with COVID-19 pathology are reversed by CD80/86 co-stimulation inhibition, including the downregulation of IL6 production. Also, analysis of previous transcriptional data from blood of SARS-CoVinfected patients showed that the response to abatacept has a very high level of antagonism to that elicited by COVID-19. Finally, analyzing a recent single cell RNA-seq dataset from bronchoalveolar lavage fluid cells from COVID-19 patients, we found a significant correlation along the main elements of the C80/86 axis: CD86+/80+ antigen presenting cells, activated CD4+ T cells and IL6 production. Our in-silico study provides additional support to the hypothesis that blocking of the CD80/CD86 signaling axis may be protective of the excessive proinflammatory state associated with COVID-19 in the lungs.
Overall Design: Whole RNAseq Blood Samples of patients treated with abatacept at week 0 and week 12.
Strategy: |
|
Species: |
|
Tissue: |
|
Healthy Condition: |
|
Growth Protocol: | - |
Treatment Protocol: | - |
Extract Protocol: | Whole blood samples were obtained at the start of the therapy with abatacept and at week 12. Blood was collected using RNA-stabilizing PaxGene tubes (PreAnalytiX, Switzerland), which preserve total RNA from the time of venipuncture. Total RNA was extracted using the PaxGene blood isolation kit (Qiagen). All samples had a RIN index > 7 and were included for RNA-seq analysis |
Library Construction Protocol: | - |
Molecule Type: | rRNA- RNA |
Library Source: | |
Library Layout: | PAIRED |
Library Strand: | - |
Platform: | ILLUMINA |
Instrument Model: | Illumina NovaSeq 6000 |
Strand-Specific: | Unspecific |
Data Resource | GEN Sample ID | GEN Dataset ID | Project ID | BioProject ID | Sample ID | Sample Name | BioSample ID | Sample Accession | Experiment Accession | Release Date | Submission Date | Update Date | Species | Race | Ethnicity | Age | Age Unit | Gender | Source Name | Tissue | Cell Type | Cell Subtype | Cell Line | Disease | Disease State | Development Stage | Mutation | Phenotype | Case Detail | Control Detail | Growth Protocol | Treatment Protocol | Extract Protocol | Library Construction Protocol | Molecule Type | Library Layout | Strand-Specific | Library Strand | Spike-In | Strategy | Platform | Instrument Model | Cell Number | Reads Number | Gbases | AvgSpotLen1 | AvgSpotLen2 | Uniq Mapping Rate | Multiple Mapping Rate | Coverage Rate |
---|