Summary: In the early fetal stage, the gonads are bipotent and only later become the ovary or testis, depending on the genetic sex. Despite many studies examining how sex determination occurs from biopotential gonads, the spatial and temporal organization of bipotential gonads and their progenitors is poorly understood. Here, using lineage tracing in mice, we find that the gonads originate from a T+ primitive streak through WT1+ posterior intermediate mesoderm and appear to share origins anteriorly with the adrenal glands and posteriorly with the metanephric mesenchyme. Comparative single cell transcriptomic analyses in mouse and cynomolgus monkey embryos reveals the convergence of the lineage trajectory and genetic programs accompanying the specification of biopotential gonadal progenitor cells. This process involves sustained expression of epithelial genes and upregulation of mesenchymal genes, thereby conferring a unique epithelial/mesenchymal hybrid state. Our study provides key resources for understanding early gonadogenesis in mice and primates.
Overall Design: Single cell transcriptome analysis of cynomolgus monkey embryo using 10x chromium Single Cell Gene expression system.
Strategy: |
|
Species: |
|
Tissue: |
|
Healthy Condition: |
|
Cell Type: |
|
Cell Line: |
|
Development Stage: |
|