Quercetin, an inhibitor of heat shock protein synthesis, inhibits the acquisition of thermotolerance in a human colon carcinoma cell line.

M Koishi, N Hosokawa, M Sato, A Nakai, K Hirayoshi, M Hiraoka, M Abe, K Nagata
Author Information
  1. M Koishi: Department of Cell Biology, Kyoto University.

Abstract

Here, we describe the effects of quercetin on the induction of thermotolerance as examined by colony forming assay in a cell line derived from human colon carcinoma (COLO320 DM). Cells became resistant to heat treatment at 45 degrees C when they were preheated at 42 degrees C for 1.5 h or at 45 degrees C for 10 min. This induction of thermotolerance was almost completely inhibited by continuous treatment with 100 microM quercetin during the first and second heating sessions, and the interval between. This effect of quercetin was demonstrated to be dose-dependent over a concentration range of 50-200 microM. Quercetin did not increase the thermosensitivity of non-tolerant cells. The presence of quercetin during the first conditioning heating was more effective in inhibiting thermotolerance than its presence during the second heating. Quercetin was also found to inhibit the acquisition of thermotolerance induced by sodium arsenite. Cycloheximide, a nonspecific inhibitor of protein synthesis, did not affect the acquisition of thermotolerance by the same cell line. Quercetin specifically inhibits the synthesis of all heat shock proteins so far reported previously, and this leads to inhibition of the induction of thermotolerance. Such inhibition of thermotolerance by quercetin may improve the efficacy of clinical fractionated hyperthermia.

References

  1. Proc Natl Acad Sci U S A. 1990 May;87(10):3748-52 [PMID: 2339118]
  2. J Am Pharm Assoc Am Pharm Assoc. 1952 Mar;41(3):119-22 [PMID: 14927476]
  3. Cancer Res. 1986 Feb;46(2):474-82 [PMID: 3510074]
  4. World Rev Nutr Diet. 1976;24:117-91 [PMID: 790781]
  5. Br J Cancer Suppl. 1982 Mar;5:127-31 [PMID: 6950747]
  6. Cancer Res. 1984 Jan;44(1):102-6 [PMID: 6690027]
  7. J Cell Biol. 1989 Jul;109(1):7-15 [PMID: 2745558]
  8. Biochemistry. 1976 Nov 16;15(23):4951-6 [PMID: 136269]
  9. Cancer Res. 1975 Jul;35(7):1865-72 [PMID: 124207]
  10. Mol Cell Biol. 1986 Apr;6(4):1088-94 [PMID: 3785158]
  11. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1681-5 [PMID: 1705702]
  12. Science. 1990 May 18;248(4957):850-4 [PMID: 2188360]
  13. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8029-33 [PMID: 3865213]
  14. Nature. 1970 Aug 15;227(5259):680-5 [PMID: 5432063]
  15. Radiat Res. 1982 May;90(2):339-47 [PMID: 7200626]
  16. J Cell Biol. 1986 Nov;103(5):2035-52 [PMID: 3536957]
  17. Mol Cell Biol. 1992 Aug;12(8):3490-8 [PMID: 1321338]
  18. Annu Rev Genet. 1988;22:631-77 [PMID: 2853609]
  19. Proc Natl Acad Sci U S A. 1986 Jan;83(2):399-403 [PMID: 2417242]
  20. Cell Struct Funct. 1986 Mar;11(1):65-73 [PMID: 3955665]
  21. Biochem Pharmacol. 1979;28(3):397-403 [PMID: 218592]
  22. J Cell Biol. 1986 Jul;103(1):223-9 [PMID: 3722264]
  23. Int J Cancer. 1990 Jun 15;45(6):1119-24 [PMID: 2351487]
  24. J Cell Biol. 1988 Apr;106(4):1105-16 [PMID: 3360849]
  25. J Cell Biol. 1967 Dec;35(3):649-58 [PMID: 6064368]
  26. Proc Natl Acad Sci U S A. 1982 May;79(10):3218-22 [PMID: 6954473]
  27. Nature. 1975 Aug 7;256(5517):500-2 [PMID: 1160994]
  28. Mol Cell Biol. 1991 Aug;11(8):4036-44 [PMID: 2072906]
  29. J Cell Physiol. 1987 Jul;132(1):41-8 [PMID: 3597553]
  30. Cancer Res. 1979 Dec;39(12):4914-24 [PMID: 498117]
  31. J Cell Biol. 1988 Apr;106(4):1117-30 [PMID: 2966179]
  32. Cancer Res. 1982 Jun;42(6):2457-61 [PMID: 7074623]
  33. Biochim Biophys Acta. 1982 Feb 25;714(3):415-21 [PMID: 6277386]
  34. Science. 1988 Oct 21;242(4877):433-6 [PMID: 3175665]
  35. Cancer Res. 1989 Apr 15;49(8):1954-8 [PMID: 2702637]
  36. Science. 1990 Jun 1;248(4959):1112-5 [PMID: 2188365]
  37. Biochem Biophys Res Commun. 1990 Jan 30;166(2):642-7 [PMID: 2302229]
  38. Cell Struct Funct. 1990 Dec;15(6):393-401 [PMID: 2085852]
  39. Can J Biochem Cell Biol. 1983 Jun;61(6):428-37 [PMID: 6883172]
  40. Science. 1988 Dec 16;242(4885):1551-4 [PMID: 3201244]

MeSH Term

Arsenic
Arsenites
Colonic Neoplasms
Cycloheximide
Heat-Shock Proteins
Humans
Hyperthermia, Induced
Kinetics
Quercetin
RNA Polymerase II
Sodium Compounds
Time Factors
Tumor Cells, Cultured

Chemicals

Arsenites
Heat-Shock Proteins
Sodium Compounds
sodium arsenite
Cycloheximide
Quercetin
RNA Polymerase II
Arsenic

Word Cloud

Created with Highcharts 10.0.0thermotolerancequercetinQuercetininductioncelllineheatdegreesCheatingacquisitionsynthesishumancoloncarcinomatreatment45microMfirstsecondpresenceinhibitorproteininhibitsshockinhibitiondescribeeffectsexaminedcolonyformingassayderivedCOLO320DMCellsbecameresistantpreheated4215h10minalmostcompletelyinhibitedcontinuous100sessionsintervaleffectdemonstrateddose-dependentconcentrationrange50-200increasethermosensitivitynon-tolerantcellsconditioningeffectiveinhibitingalsofoundinhibitinducedsodiumarseniteCycloheximidenonspecificaffectspecificallyproteinsfarreportedpreviouslyleadsmayimproveefficacyclinicalfractionatedhyperthermia

Similar Articles

Cited By