Glutamine metabolism and cycling in Neurospora crassa.

J Mora
Author Information
  1. J Mora: Centro de Investigación Sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos.

Abstract

Evidence for the existence of a glutamine cycle in Neurospora crassa is reviewed. Through this cycle glutamine is converted into glutamate by glutamate synthase and catabolized by the glutamine transaminase-omega-amidase pathway, the products of which (2-oxoglutarate and ammonium) are the substrates for glutamate dehydrogenase-NADPH, which synthesizes glutamate. In the final step ammonium is assimilated into glutamine by the action of a glutamine synthetase (GS), which is formed by two distinct polypeptides, one catalytically very active (GS beta), and the other (GS alpha) less active but endowed with the capacity to modulate the activity of GS alpha. Glutamate synthase uses the amide nitrogen of glutamine to synthesize glutamate; glutamate dehydrogenase uses ammonium, and both are required to maintain the level of glutamate. The energy expended in the synthesis of glutamine drives the cycle. The glutamine cycle is not futile, because it is necessary to drive an effective carbon flow to support growth; in addition, it facilitates the allocation of nitrogen or carbon according to cellular demands. The glutamine cycle which dissipates energy links catabolism and anabolism and, in doing so, buffers variations in the nutrient supply and drives energy generation and carbon flow for optimal cell function.

References

  1. J Bacteriol. 1988 Sep;170(9):3961-6 [PMID: 2842294]
  2. J Bacteriol. 1982 Apr;150(1):105-12 [PMID: 6120927]
  3. Biochem Biophys Res Commun. 1980 Jan 15;92(1):127-33 [PMID: 6444511]
  4. J Biol Chem. 1976 Aug 10;251(15):4787-91 [PMID: 7567]
  5. J Biol Chem. 1984 Jul 25;259(14):8875-9 [PMID: 6235220]
  6. J Bacteriol. 1983 Jan;153(1):390-4 [PMID: 6217196]
  7. Biochem J. 1983 Feb 1;209(2):527-31 [PMID: 6221721]
  8. J Bacteriol. 1986 Sep;167(3):1043-7 [PMID: 2943726]
  9. J Bacteriol. 1987 Oct;169(10):4692-5 [PMID: 2888750]
  10. FEBS Lett. 1982 Sep 20;146(2):327-30 [PMID: 6128259]
  11. J Bacteriol. 1980 Nov;144(2):641-8 [PMID: 6107288]
  12. Biochem Biophys Res Commun. 1980 Oct 31;96(4):1688-94 [PMID: 6449930]
  13. Biochem Genet. 1978 Apr;16(3-4):343-54 [PMID: 150270]
  14. Annu Rev Microbiol. 1972;26:103-26 [PMID: 4562805]
  15. J Biol Chem. 1987 Apr 5;262(10):4460-71 [PMID: 3558349]
  16. Microbiol Rev. 1986 Sep;50(3):280-313 [PMID: 2945985]
  17. J Biol Chem. 1973 Sep 10;248(17):6122-8 [PMID: 4146916]
  18. J Gen Microbiol. 1978 Jun;106(2):251-9 [PMID: 27575]
  19. Plant Physiol. 1984 Feb;74(2):204-7 [PMID: 16663398]
  20. J Bacteriol. 1990 Sep;172(9):4996-5000 [PMID: 1975579]
  21. CRC Crit Rev Biochem. 1977;4(3):281-303 [PMID: 319948]
  22. J Biol Chem. 1977 Dec 10;252(23):8724-7 [PMID: 21883]
  23. J Bacteriol. 1985 Feb;161(2):807-9 [PMID: 2857167]
  24. J Bacteriol. 1988 Jul;170(7):3142-9 [PMID: 3290197]
  25. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2011-5 [PMID: 6144100]
  26. J Bacteriol. 1987 Mar;169(3):1114-9 [PMID: 2880834]
  27. J Biol Chem. 1980 Mar 25;255(6):2524-32 [PMID: 6987224]
  28. J Bacteriol. 1983 Dec;156(3):993-1000 [PMID: 6139363]
  29. Proc Natl Acad Sci U S A. 1983 May;80(10):2829-33 [PMID: 6304684]
  30. J Bacteriol. 1979 Jun;138(3):909-14 [PMID: 156715]
  31. FEBS Lett. 1988 Sep 12;237(1-2):133-6 [PMID: 3169234]
  32. J Bacteriol. 1978 Jun;134(3):693-8 [PMID: 26664]
  33. Lancet. 1986 Nov 1;2(8514):1008-12 [PMID: 2877174]
  34. Trends Biochem Sci. 1988 Mar;13(3):101-4 [PMID: 2977455]
  35. Biochem Biophys Res Commun. 1977 Oct 24;78(4):1234-40 [PMID: 21661]
  36. J Biol Chem. 1972 Nov 25;247(22):7407-19 [PMID: 4565085]
  37. Mol Gen Genet. 1984;197(2):309-17 [PMID: 6151621]
  38. J Biol Chem. 1980 Mar 25;255(6):2231-4 [PMID: 6102088]
  39. Curr Top Cell Regul. 1976;10:237-89 [PMID: 1253621]
  40. J Bacteriol. 1973 Jul;115(1):284-90 [PMID: 4717516]
  41. J Biol Chem. 1982 Dec 10;257(23):14168-72 [PMID: 6128342]
  42. Eur J Biochem. 1972 Mar 15;26(1):68-72 [PMID: 4402918]
  43. J Bacteriol. 1987 Dec;169(12):5518-22 [PMID: 2960663]
  44. Biochim Biophys Acta. 1983 Jan 25;755(2):272-8 [PMID: 6131695]
  45. Biochim Biophys Acta. 1985 Dec 13;843(3):214-29 [PMID: 2865982]
  46. J Gen Microbiol. 1987 Jul;133(7):1667-74 [PMID: 2959749]
  47. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2120-4 [PMID: 6113590]
  48. Biochim Biophys Acta. 1982 Dec 31;683(3-4):181-220 [PMID: 7159578]
  49. J Bacteriol. 1977 Sep;131(3):719-25 [PMID: 142762]
  50. J Bacteriol. 1988 May;170(5):2374-8 [PMID: 3283109]
  51. J Bacteriol. 1986 Jan;165(1):133-8 [PMID: 2867084]
  52. J Bacteriol. 1984 Feb;157(2):612-21 [PMID: 6141156]
  53. J Bacteriol. 1989 Mar;171(3):1772-4 [PMID: 2522094]
  54. Nucleic Acids Res. 1986 Jan 24;14(2):999-1008 [PMID: 2868445]
  55. J Bacteriol. 1975 Aug;123(2):407-18 [PMID: 238954]
  56. J Gen Microbiol. 1979 Nov;115(1):59-68 [PMID: 43352]
  57. J Bacteriol. 1986 Jun;166(3):1040-5 [PMID: 2872202]
  58. Eur J Biochem. 1980 Aug;109(1):269-83 [PMID: 7408881]
  59. Biochim Biophys Acta. 1958 Apr;28(1):202-3 [PMID: 13535700]
  60. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1495-8 [PMID: 6453347]
  61. J Biol Chem. 1973 Aug 10;248(15):5403-8 [PMID: 4358616]
  62. J Bacteriol. 1983 Jul;155(1):1-7 [PMID: 6134713]
  63. FEBS Lett. 1987 May 4;215(1):187-91 [PMID: 2883028]
  64. Plant Physiol. 1986 May;81(1):142-8 [PMID: 16664764]
  65. Microbiol Rev. 1988 Dec;52(4):554-67 [PMID: 3070324]
  66. J Gen Microbiol. 1989 Oct;135(10):2699-707 [PMID: 2576659]
  67. Biochem J. 1970 Apr;117(2):405-7 [PMID: 5420057]
  68. Biochem Biophys Res Commun. 1980 Jan 15;92(1):134-40 [PMID: 6101946]
  69. Annu Rev Microbiol. 1984;38:459-86 [PMID: 6388498]
  70. J Bacteriol. 1982 Jul;151(1):358-66 [PMID: 6806243]
  71. J Bacteriol. 1983 Apr;154(1):524-8 [PMID: 6300039]

MeSH Term

Glutamine
Neurospora crassa

Chemicals

Glutamine

Word Cloud

Created with Highcharts 10.0.0glutamineglutamatecycleGSammoniumenergycarbonNeurosporacrassasynthaseactivealphausesnitrogendrivesflowEvidenceexistencereviewedconvertedcatabolizedtransaminase-omega-amidasepathwayproducts2-oxoglutaratesubstratesdehydrogenase-NADPHsynthesizesfinalstepassimilatedactionsynthetaseformedtwodistinctpolypeptidesonecatalyticallybetalessendowedcapacitymodulateactivityGlutamateamidesynthesizedehydrogenaserequiredmaintainlevelexpendedsynthesisfutilenecessarydriveeffectivesupportgrowthadditionfacilitatesallocationaccordingcellulardemandsdissipateslinkscatabolismanabolismbuffersvariationsnutrientsupplygenerationoptimalcellfunctionGlutaminemetabolismcycling

Similar Articles

Cited By