Yeast alpha 2 repressor positions nucleosomes in TRP1/ARS1 chromatin.

S Y Roth, A Dean, R T Simpson
Author Information
  1. S Y Roth: Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892.

Abstract

The yeast alpha 2 repressor suppresses expression of a-mating-type-specific genes in haploid alpha and diploid a/alpha cell types. We inserted the alpha 2-binding site into the multicopy TRP1/ARS1 yeast plasmid and examined the effects of alpha 2 on the chromatin structure of the derivative plasmids in alpha cells, and a/alpha cells. Whereas no effect on nucleosome position was observed in a cells, nucleosomes were precisely and stably positioned over sequences flanking the alpha 2 operator in alpha and a/alpha cells. In addition, when the alpha 2 operator was located upstream of the TRP1 gene, an extended array of positioned nucleosomes was formed in alpha cells and a/alpha cells, with formation of a nucleosome not present in a cells, and TRP1 mRNA production was substantially reduced. These data indicate that alpha 2 causes a positioning of nucleosomes over sequences proximal to its operator in TRP1/ARS1 chromatin and suggest that changes in chromatin structure may be related to alpha 2 repression of cell-type-specific genes.

References

  1. Genes Dev. 1989 Jul;3(7):936-45 [PMID: 2550323]
  2. EMBO J. 1989 Aug;8(8):2343-51 [PMID: 2792088]
  3. Methods Enzymol. 1989;170:26-41 [PMID: 2671602]
  4. Mol Cell Biol. 1989 Sep;9(9):3992-8 [PMID: 2506439]
  5. J Mol Biol. 1981 Dec 5;153(2):323-35 [PMID: 7040682]
  6. EMBO J. 1987 Mar;6(3):743-8 [PMID: 16453751]
  7. J Mol Biol. 1988 Nov 5;204(1):109-27 [PMID: 3063825]
  8. Cell. 1985 Aug;42(1):237-47 [PMID: 3893743]
  9. Nature. 1984 Jul 5-11;310(5972):25-31 [PMID: 6330566]
  10. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991-5 [PMID: 6326095]
  11. Mol Cell Biol. 1984 Nov;4(11):2420-7 [PMID: 6096697]
  12. Nucleic Acids Res. 1988 Jul 25;16(14A):6677-90 [PMID: 3399412]
  13. Cell. 1987 Nov 20;51(4):613-22 [PMID: 3677170]
  14. J Mol Biol. 1984 Aug 25;177(4):715-33 [PMID: 6384525]
  15. Annu Rev Microbiol. 1983;37:623-60 [PMID: 6357062]
  16. Cell. 1988 Dec 23;55(6):945-53 [PMID: 3060264]
  17. Nature. 1985 May 16-22;315(6016):250-2 [PMID: 3889654]
  18. Cell. 1988 Jun 17;53(6):927-36 [PMID: 3289753]
  19. Proc Natl Acad Sci U S A. 1983 May;80(10):3035-9 [PMID: 6344075]
  20. J Mol Biol. 1981 Apr 15;147(3):357-72 [PMID: 7031257]
  21. J Mol Biol. 1986 Jul 20;190(2):177-90 [PMID: 3540310]
  22. Nature. 1984 Jul 5-11;310(5972):70-1 [PMID: 6429549]
  23. Cell. 1988 Jul 29;54(3):285-7 [PMID: 3293798]
  24. Genes Dev. 1989 Jul;3(7):921-35 [PMID: 2673922]
  25. Bioessays. 1986 Apr;4(4):172-6 [PMID: 3539111]
  26. Cell. 1983 Feb;32(2):409-15 [PMID: 6337727]
  27. Cell. 1984 Jul;37(3):889-901 [PMID: 6540146]
  28. Mol Cell Biol. 1988 Aug;8(8):3114-21 [PMID: 2463472]
  29. J Mol Biol. 1988 Dec 5;204(3):593-606 [PMID: 3066908]
  30. Cell. 1988 Mar 25;52(6):875-82 [PMID: 3127056]
  31. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2536-40 [PMID: 3517872]
  32. Nature. 1990 Jan 25;343(6256):387-9 [PMID: 2405281]
  33. Mol Cell Biol. 1988 Jan;8(1):309-20 [PMID: 3275872]
  34. Mol Cell Biol. 1987 Apr;7(4):1401-8 [PMID: 3600631]
  35. Cell. 1986 Apr 11;45(1):95-104 [PMID: 3955658]
  36. Mol Cell Biol. 1988 Oct;8(10):4257-69 [PMID: 3185548]
  37. J Mol Biol. 1981 Dec 5;153(2):305-21 [PMID: 7040681]
  38. Cell. 1988 Dec 23;55(6):1137-45 [PMID: 2849508]
  39. Cell. 1987 Aug 28;50(5):681-91 [PMID: 3304657]
  40. Genes Dev. 1988 Jul;2(7):807-16 [PMID: 3061876]
  41. Cell. 1987 Jul 31;50(3):369-77 [PMID: 3301002]
  42. Science. 1987 Aug 28;237(4818):1007-12 [PMID: 2887035]
  43. Mol Cell Biol. 1982 Mar;2(3):221-32 [PMID: 6287231]
  44. Cell. 1987 Apr 24;49(2):203-10 [PMID: 3568125]
  45. Mol Cell Biol. 1985 Nov;5(11):3124-30 [PMID: 3018502]
  46. Science. 1987 Sep 4;237(4819):1162-70 [PMID: 3306917]
  47. Nature. 1985 Apr 18-24;314(6012):598-603 [PMID: 3887184]
  48. Nature. 1986 Apr 24-30;320(6064):766-8 [PMID: 3517656]

MeSH Term

Gene Expression Regulation, Fungal
Mating Factor
Micrococcal Nuclease
Nucleosomes
Operator Regions, Genetic
Peptides
Plasmids
Regulatory Sequences, Nucleic Acid
Repressor Proteins
Saccharomyces cerevisiae
Transcription Factors
Tryptophan

Chemicals

Nucleosomes
Peptides
Repressor Proteins
Transcription Factors
Mating Factor
Tryptophan
Micrococcal Nuclease

Word Cloud

Created with Highcharts 10.0.0alpha2cellsa/alphachromatinnucleosomesTRP1/ARS1operatoryeastrepressorgenesstructurenucleosomepositionedsequencesTRP1suppressesexpressiona-mating-type-specifichaploiddiploidcelltypesinserted2-bindingsitemulticopyplasmidexaminedeffectsderivativeplasmidsWhereaseffectpositionobservedpreciselystablyflankingadditionlocatedupstreamgeneextendedarrayformedformationpresentmRNAproductionsubstantiallyreduceddataindicatecausespositioningproximalsuggestchangesmayrelatedrepressioncell-type-specificYeastpositions

Similar Articles

Cited By